【題目】廣場(chǎng)舞是現(xiàn)代城市群眾文化、娛樂(lè)發(fā)展的產(chǎn)物,也是城市精神文明建設(shè)成果的一個(gè)重要象征.2016年某校社會(huì)實(shí)踐小組對(duì)某小區(qū)廣場(chǎng)舞的開(kāi)展?fàn)顩r進(jìn)行了年齡的調(diào)查,隨機(jī)抽取了40名廣場(chǎng)舞者進(jìn)行調(diào)查,將他們年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.

(l)計(jì)算這40名廣場(chǎng)舞者中年齡分布在的人數(shù);

(2)若從年齡在中的廣場(chǎng)舞者任取2名,求這兩名廣場(chǎng)舞者中恰有一人年齡在的概率.

【答案】(1)30;(2).

【解析】試題分析:(1)由題意可知,樣本容量為40,由條形圖可求得的頻率和為,所以n=頻率樣本容量。(2)由直方圖可知,年齡在有2人,分別記為,在有4人,分別記為.采用枚舉法,可知總共情況是15種,滿足條件的是8種,所以概率為。

試題解析:(1)由表中數(shù)據(jù)知,這40名廣場(chǎng)舞者中年齡分布在的人數(shù)為.

(2)由直方圖可知,年齡在有2人,分別記為,在有4人,分別記為.

現(xiàn)從這6人中任選兩人,共有如下15種選法:,,,,,,,,,,,

其中恰有1人在有8種,

故這兩名廣場(chǎng)舞者恰有一人年齡在的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.

(1)求角B的大;

(2)若△ABC的面積為,求sinA+sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖像與直線相切.

Ⅰ)求的值,并求的單調(diào)區(qū)間;

Ⅱ)若,設(shè),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高考改革實(shí)施方案指出:該省高考考生總成績(jī)將由語(yǔ)文、數(shù)學(xué)、外語(yǔ)3門(mén)統(tǒng)一高考成績(jī)和學(xué)生自主選擇的學(xué)業(yè)水平等級(jí)性考試科目共同構(gòu)成,該省教育廳為了解正在讀高中的學(xué)生家長(zhǎng)對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長(zhǎng)作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見(jiàn),如圖是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(1)根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?

注:,其中.

(2)用樣本的頻率估計(jì)概率,若隨機(jī)在全省不贊成高考改革的家長(zhǎng)中抽取3個(gè),記這3個(gè)家長(zhǎng)中是城鎮(zhèn)戶口的人數(shù)為,試求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=x3+(k﹣1)x2+(k+5)x﹣1在區(qū)間(0,2)上不單調(diào),則實(shí)數(shù)k的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:
①經(jīng)過(guò)定點(diǎn)P0(x0 , y0)的直線都可以用方程y﹣y0=k(x﹣x0)表示;
②經(jīng)過(guò)定點(diǎn)A(0,b)的直線都可以用方程y=kx+b表示;
③不經(jīng)過(guò)原點(diǎn)的直線都可以用方程 + =1表示;
④經(jīng)過(guò)任意兩個(gè)不同的 點(diǎn)P1(x1 , y1)、P2(x2 , y2)的直線都可以用方程(y﹣y1)(x2﹣x1)=(x﹣x1)(y2﹣y1)表示;
其中真命題的個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足a1= ,2Sn﹣SnSn1=1(n≥2).
(1)猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(2)設(shè)bn= ,n∈N* , 求bn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l與兩直線y=1,x﹣y﹣7=0分別交于A,B兩點(diǎn),若直線AB的中點(diǎn)是M(1,﹣1),則直線l的斜率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)當(dāng)時(shí),求函數(shù)的定義域;

(2)若判斷的奇偶性;

(3)是否存在實(shí)數(shù)使函數(shù)[2,3]遞增,并且最大值為1,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案