分析 由題意將所用的向量放到坐標(biāo)系中用坐標(biāo)表示,借助于兩點(diǎn)之間的距離公式以及幾何意義,即可得到最值.
解答 解:∵$\overrightarrow{a}•\overrightarrow=\frac{1}{2}$,$|\overrightarrow{a}|=|\overrightarrow|=1$,
∴$\overrightarrow{a},\overrightarrow$的夾角為60°.
設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,$\overrightarrow{OC}=\overrightarrow{c}$,A(1,0),B($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),C(x,y).
∵|$\overrightarrow{c}$$-\overrightarrow{a}$|+$\overrightarrow{c}$$-2\overrightarrow$|=$\sqrt{3}$,
∴$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+(y-\sqrt{3})^{2}}$=$\sqrt{3}$.
∴C點(diǎn)到A(1,0)與到點(diǎn)D(1,$\sqrt{3}$)的距離之和為$\sqrt{3}$,
∵|AD|=$\sqrt{3}$,
∴C在線段AD上.
而|$\overrightarrow{c}$$+2\overrightarrow{a}$|=$\sqrt{(x-2)^{2}+{y}^{2}}$,表示C(x,y)到點(diǎn)E(2,0)的距離.
∴當(dāng)C位于點(diǎn)A時,|CE|取得最小值1,當(dāng)C位于D時,|CE|取得最大值2.
故答案為:[1,2].
點(diǎn)評 本題考查了向量的坐標(biāo)運(yùn)算、兩點(diǎn)之間的距離公式,關(guān)鍵是利用幾何意義和坐標(biāo)法解決.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,3) | B. | (1,2) | C. | (2,3) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+bi=a-bi | B. | a+bi=-a+bi | C. | ab=0 | D. | a=b=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,4) | B. | [2,4] | C. | [2,4) | D. | [$\sqrt{5}$,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com