【題目】已知橢圓 + =1與x軸交于A、B兩點(diǎn),過橢圓上一點(diǎn)P(x0 , y0)(P不與A、B重合)的切線l的方程為 + =1,過點(diǎn)A、B且垂直于x軸的垂線分別與l交于C、D兩點(diǎn),設(shè)CB、AD交于點(diǎn)Q,則點(diǎn)Q的軌跡方程為

【答案】 +y2=1(x≠±3)
【解析】解:橢圓 + =1的a=3,

可得A(﹣3,0),B(3,0),

由x=﹣3代入切線l的方程為 + =1,

可得y= ,即C(﹣3, ),

由x=3代入切線l的方程為 + =1,

可得y= ,即D(3, ),

可得直線CB的方程為y= (x﹣3)①

直線AD的方程為y= (x+3)②

①×②可得y2=﹣ (x2﹣9),③

結(jié)合P在橢圓上,可得 + =1,

即有9﹣x02= ,

代入③可得, +y2=1(x≠±3).

所以答案是: +y2=1(x≠±3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)求函數(shù) 的單調(diào)區(qū)間;
(2)若函數(shù) 在區(qū)間 上的最小值為0,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax+b.
(1)若f(x)在x=2有極小值1﹣e2 , 求實(shí)數(shù)a,b的值.
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】底面為正方形的四棱錐S﹣ABCD,且SD⊥平面ABCD,SD= ,AB=1,線段SB上一M點(diǎn)滿足 = ,N為線段CD的中點(diǎn),P為四棱錐S﹣ABCD表面上一點(diǎn),且DM⊥PN,則點(diǎn)P形成的軌跡的長(zhǎng)度為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:
①整數(shù)集可以表示為{x|x為全體整數(shù)}或{ };
②方程組 的解集為 {x=3,y=1};
③集合{x∈N|x2=1}用列舉法可表示為{1,1};
④集合 是無限集.
其中正確的是 ( )
A.①和③
B.②和④
C.④
D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=sin(2x+ )的圖象,只需將y=cos2x的圖象上每一點(diǎn)(
A.向右平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向左平移 個(gè)單位長(zhǎng)度
D.向左平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}前n項(xiàng)的和為Sn , 滿足a1=0,an≥0,3an+12=an2+an+1(n∈N*) (Ⅰ)用數(shù)學(xué)歸納法證明:1 ≤an<1(n∈N*)
(Ⅱ)求證:an<an+1(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ﹣3lnx(a∈R).
(1)若x=3是f(x)的一個(gè)極值點(diǎn),求a值及f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=﹣2時(shí),求f(x)在區(qū)間[1,e]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案