【題目】若,則定義直線為曲線,的“分界直線”.已知,則的“分界直線”為____.
【答案】y=x-1
【解析】
求得f(x),g(x)的交點(diǎn)(1,0),可得所求直線過(1,0),即b=﹣k,由kx﹣k(x)在x>1恒成立,運(yùn)用判別式小于等于0,化簡(jiǎn)可得k=1,可得直線方程為y=x﹣1,再證x﹣1≤xlnx在x≥1恒成立,通過函數(shù)y=xlnx﹣x+1,求得導(dǎo)數(shù),判斷單調(diào)性,即可得到所求結(jié)論.
由f(1)=ln1=0,g(1)(1﹣1)=0,
則f(x),g(x)的圖象存在交點(diǎn)(1,0),
且f(x),g(x)在[1,+∞)遞增,
可得直線y=kx+b必過(1,0),即b=﹣k,
由kx+b≥g(x),即kx﹣k(x)在x>1恒成立,
即有(2k﹣1)x2﹣2kx+1≥0,
可得2k﹣1>0,且△=4k2﹣4(2k﹣1)≤0,
解得k=1,
即有直線方程為y=x﹣1,
下面證明x﹣1≤xlnx在x≥1恒成立,
由y=xlnx﹣x+1的導(dǎo)數(shù)為y′=1+lnx﹣1=lnx,
由x≥1可得lnx≥0,即有函數(shù)y=xlnx﹣x+1在x≥1遞增,
可得xlnx≥x﹣1在x≥1恒成立,
則f(x),g(x)的“分界直線”為y=x﹣1.
故答案為:y=x﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),的圖象在點(diǎn)處的切線與直線平行.
(1)求的值;
(2)若函數(shù),且在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F1為橢圓E:(a>b>0)的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等腰直角三角形,直線與橢圓E有且僅有一個(gè)交點(diǎn)M.
(1)求橢圓E的方程;
(2)設(shè)直線與y軸交于P,過點(diǎn)P的直線l與橢圓E交于不同的兩點(diǎn)A,B,若λ|PM|2=|PA|·|PB|,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A為曲線上的動(dòng)點(diǎn),點(diǎn)B在線段OA的延長(zhǎng)線上,且滿足,點(diǎn)B的軌跡為.
(1)求,的極坐標(biāo)方程;
(2)設(shè)點(diǎn)C的極坐標(biāo)為(2,0),求△ABC面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知可以用一系列半徑為且彼此不重疊的圓盤覆蓋平面上的所有格點(diǎn)(在平面直角坐標(biāo)系中,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)為格點(diǎn)),則______4 (填“大于~小于”或“等于”).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)過點(diǎn),離心率為.
(1)求橢圓C的方程;
(2)若斜率為的直線l與橢圓C交于A,B兩點(diǎn),試探究是否為定值?若是定值,則求出此定值;若不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線的極坐標(biāo)方程為.
(1)把曲線的方程化為普通方程,的方程化為直角坐標(biāo)方程
(2)若曲線,相交于兩點(diǎn),的中點(diǎn)為,過點(diǎn)作曲線的垂線交曲線于兩點(diǎn),求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com