分析 由(x-2)•f(x)<0對x-2>0或x-2<0進行討論,把不等式(x-2)•f(x)<0轉化為f(x)>0或f(x)<0的問題解決,根據f(x)是奇函數,且在(0,+∞)內是增函數,又f(-3)=0,把函數值不等式轉化為自變量不等式,求得結果.
解答 解:∵f(x)是R上的奇函數,且在(0,+∞)內是增函數,
∴在(-∞,0)內f(x)也是增函數,
又∵f(-3)=0,
∴f(3)=0
∴當x∈(-∞,-3)∪(0,3)時,f(x)<0;
當x∈(-3,0)∪(3,+∞)時,f(x)>0;
∵(x-2)•f(x)<0
∴$\left\{\begin{array}{l}x-2<0\\ f(x)>0\end{array}\right.$或$\left\{\begin{array}{l}x-2>0\\ f(x)<0\end{array}\right.$,
解得-3<x<0或2<x<3
∴不等式的解集是(-3,0)∪(2,3)
故答案為:(-3,0)∪(2,3)
點評 本題主要考查函數的奇偶性和單調性解不等式,體現了分類討論的思想方法,屬中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com