【題目】下列四個命題中,正確的有( ) ①兩個變量間的相關(guān)系數(shù)r越小,說明兩變量間的線性相關(guān)程度越低;
②命題“x∈R,使得x2+x+1<0”的否定是:“對x∈R,均有x2+x+1>0”;
③命題“p∧q為真”是命題“p∨q為真”的必要不充分條件;
④若函數(shù)f(x)=x3+3ax2+bx+a2在x=﹣1有極值0,則a=2,b=9或a=1,b=3.
A.0 個
B.1 個
C.2 個
D.3個
【答案】A
【解析】解:對于①:相關(guān)系數(shù)r的絕對值越趨近于1,相關(guān)性越強;越趨近于0,相關(guān)性越弱,故①錯誤; 對于②:命題“x∈R,使得x2+x+1<0”的否定是:“對x∈R,均有x2+x+1≥0”,故②錯誤;
對于③:若p∧q為真,則p、q均為真命題,此時p∨q為真,故命題“p∧q為真”是命題“p∨q為真”的充分條件,故③錯誤;
對于④:f'(x)=3x2+6ax+b,因為f(x)在x=﹣1有極值0,故 ,解得
經(jīng)檢驗,當(dāng)a=2,b=9時,f'(x)=3x2+12x+9=3(x+1)(x+3),此時f(x)在x=﹣1處取得極小值,符合條件;
當(dāng)a=1,b=3時,f'(x)=3x2+6x+3=3(x+1)2≥0恒成立,此時f(x)沒有極值點,故不符合條件;
所以a=2,b=9.故④錯誤.
故選:A.
【考點精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinA,cosA), =(cosB,sinB), =sin2C且A、B、C分別為△ABC的三邊a,b,c所對的角.
(1)求角C的大。
(2)若sinA,sinC,sinB成等比數(shù)列,且 =18,求c的值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某早餐店每天制作甲、乙兩種口味的糕點共n(nN*)份,每份糕點的成本1元,售價2元,如果當(dāng)天賣不完,剩下的糕點作廢品處理.該早餐店發(fā)現(xiàn)這兩種糕點每天都有剩余,為此整理了過往100天這兩種糕點的日銷量(單位:份),得到如下的統(tǒng)計數(shù)據(jù):
甲口味糕點日銷量 | 48 | 49 | 50 | 51 |
天數(shù) | 20 | 40 | 20 | 20 |
乙口味糕點日銷量 | 48 | 49 | 50 | 51 |
天數(shù) | 40 | 30 | 20 | 10 |
以這100天記錄的各銷量的頻率作為各銷量的概率,假設(shè)這兩種糕點的日銷量相互獨立.
(1)記該店這兩種糕點每日的總銷量為X份,求X的分布列
(2)早餐店為了減少浪費,提升利潤,決定調(diào)整每天制作糕點的份數(shù)
①若產(chǎn)生浪費的概率不超過0.6,求n的最大值;
②以銷售這兩種糕點的日總利潤的期望值為決策依據(jù),在每天所制糕點能全部賣完與n=98之中選其一,應(yīng)選哪個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線: 與橢圓有且只有一個公共點.
(Ⅰ)求橢圓的方程及點的坐標;
(Ⅱ)設(shè)是坐標原點,直線平行于,與橢圓交于不同的兩點、,且與直線交于點,證明:存在常數(shù),使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(sin x,cos x), =(sin x, sin x),x∈R,函數(shù)f(x)= ,求:
(1)f(x)的最小正周期;
(2)f(x)在區(qū)間[0,1]上的最大值和最小值,以及取得最大值和最小值時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家“十三五”計劃,提出創(chuàng)新興國,實現(xiàn)中國創(chuàng)新,某市教育局為了提高學(xué)生的創(chuàng)新能力,把行動落到實處,舉辦一次物理、化學(xué)綜合創(chuàng)新技能大賽,某校對其甲、乙、丙、丁四位學(xué)生的物理成績(x)和化學(xué)成績(y)進行回歸分析,求得回歸直線方程為y=1.5x﹣35.由于某種原因,成績表(如表所示)中缺失了乙的物理和化學(xué)成績.
甲 | 乙 | 丙 | 丁 | |
物理成績(x) | 75 | m | 80 | 85 |
化學(xué)成績(y) | 80 | n | 85 | 95 |
綜合素質(zhì) | 155 | 160 | 165 | 180 |
(1)請設(shè)法還原乙的物理成績m和化學(xué)成績n;
(2)在全市物理化學(xué)科技創(chuàng)新比賽中,由甲、乙、丙、丁四位學(xué)生組成學(xué)校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學(xué)校代表中隨機抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質(zhì)分高于160分,就能為所在學(xué)校贏得一枚榮譽獎?wù)拢粲洷荣愔汹A得榮譽獎?wù)碌拿稊?shù)為ξ,試根據(jù)上表所提供數(shù)據(jù),預(yù)測該校所獲獎?wù)聰?shù)ξ的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 、分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.
(1)求橢圓的標準方程;
(2)若為等腰三角形,求點的坐標;
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分別在線段AB,AC上,AP=3PB,AQ=2QC,M是BD的中點.
(Ⅰ)證明:DQ∥平面CPM;
(Ⅱ)若二面角C﹣AB﹣D的大小為 ,求∠BDC的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(a))=2f(a)的a的取值范圍是( )
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com