16.設(shè)函數(shù)f(x)=sinx+|sinx|,則f(x)為( 。
A.周期函數(shù),最小正周期為$\frac{2π}{3}$B.周期函數(shù),最小正周期為$\frac{π}{3}$
C.周期函數(shù),最小正周期為2πD.非周期函數(shù)

分析 利用正弦函數(shù)的圖象和性質(zhì)作出函數(shù)f(x)的簡圖,利用圖象即可得解.

解答 解:利用正弦函數(shù)的圖象和性質(zhì)作出函數(shù)f(x)=sinx+|sinx|簡圖如下:

由函數(shù)的圖象可知函數(shù)f(x)=sinx+|sinx|是周期函數(shù),最小正周期為2π.
故選:C.

點評 本題主要考查了正弦函數(shù)的圖象和性質(zhì),考查了周期函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+ax+1.
(1)解不等式f(x)>0.
(2)若f(x)在x∈[-3,1)上恒有f(x)≥-3成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求值:$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在[0,π]內(nèi)任意取一個數(shù)x,使得sinx+$\sqrt{3}$cosx≥1的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=x+$\frac{cosx}{x}$的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在直角三角形ABC中,直角頂點為C,其中∠B=60°,在角ACB內(nèi)部任作一條射線CM,與線段AB交于點M,滿足AM<AC的概率為$\frac{5}{6}$,則滿足BC<AM<AC的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.根據(jù)a的不同取值,求f(x)=$\frac{1}{{x}^{2}+ax+1}$(a∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={-2,-1,1,2,4},B={y|y=log2|x|-1,x∈A},則A∩B=( 。
A.{-2,-1,1}B.{-1,1,2}C.{-1,1}D.{-2,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=3,an+1•an-2•an+1=0 (n∈N*).
(1)求$\frac{1}{{a}_{2}-1}$,$\frac{1}{{a}_{3}-1}$,$\frac{1}{{a}_{4}-1}$的值;
(2)求{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案