9.已知數(shù)列{an}滿足a1=3,an+1•an-2•an+1=0 (n∈N*).
(1)求$\frac{1}{{a}_{2}-1}$,$\frac{1}{{a}_{3}-1}$,$\frac{1}{{a}_{4}-1}$的值;
(2)求{an}的通項(xiàng)公式.

分析 (1)化簡(jiǎn)可得an+1=2-$\frac{1}{an}$,n依次取值2,3,4求得;
(2)猜想{$\frac{1}{an-1}$}是等差數(shù)列,從而證明,從而寫(xiě)出$\frac{1}{an-1}$=$\frac{1}{2}$+n-1,從而解得.

解答 解:(1)由an+1an=2•an-1得an+1=2-$\frac{1}{an}$,
代入a1=3,n依次取值2,3,4,得
$\frac{1}{a2-1}$=$\frac{3}{2}$,$\frac{1}{a3-1}$=$\frac{5}{2}$,$\frac{1}{a4-1}$=$\frac{7}{2}$,
(2)猜想:{$\frac{1}{an-1}$}是等差數(shù)列.
證明:由an+1•an=2•an-1變形得,
(an+1-1)•(an-1)=-(an+1-1)+(an-1),
即$\frac{1}{an+1-1}$-$\frac{1}{an-1}$=1在n∈N*時(shí)恒成立,
所以{$\frac{1}{an-1}$}是等差數(shù)列.
由$\frac{1}{a1-1}$=$\frac{1}{2}$,所以$\frac{1}{an-1}$=$\frac{1}{2}$+n-1,
變形得an-1=$\frac{2}{2n-1}$,
所以an=$\frac{2n+1}{2n-1}$.

點(diǎn)評(píng) 本題考查了數(shù)列的性質(zhì),同時(shí)考查了整體思想與轉(zhuǎn)化思想的應(yīng)用,同時(shí)考查了歸納法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)=sinx+|sinx|,則f(x)為( 。
A.周期函數(shù),最小正周期為$\frac{2π}{3}$B.周期函數(shù),最小正周期為$\frac{π}{3}$
C.周期函數(shù),最小正周期為2πD.非周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.(2x+3y)8的展開(kāi)式中共有9項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.甲蟲(chóng)是行動(dòng)較快的昆蟲(chóng)之一,如表記錄了某種類型的甲蟲(chóng)的爬行速度:
 時(shí)間t(s) 1 2 3 60
 距離s(cm) 9.8 19.6 29.4 49?
(1)你能建立一個(gè)等差數(shù)列的模型,表示甲蟲(chóng)的爬行距離和時(shí)間之間的關(guān)系嗎?
(2)利用建立的模型計(jì)算,甲蟲(chóng)1min能爬多遠(yuǎn)?它爬行49cm需要多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)為定義域在(0,+∞)上的增函數(shù),且f(2)=1,f(xy)=f(x)+f(y),求使f(x)+f(x-3)<2的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.為了研究高中學(xué)生對(duì)鄉(xiāng)村音樂(lè)的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算k2=8.01,附表如下:
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
參照附表,得到的正確的結(jié)論是( 。
A.有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別有關(guān)”
B.有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別無(wú)關(guān)”
C.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在一次調(diào)查中,甲、乙、丙、丁四名同學(xué)的閱讀量有如下關(guān)系:甲、丙閱讀量之和與乙、丁閱讀量之和相同,甲、乙閱讀量之和大于丙、丁閱讀量之和,丁的閱讀量大于乙、丙閱讀量之和.那么這四名同學(xué)按閱讀量從大到小的排序依次為甲丁乙丙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\frac{1}{1+px+q{x}^{2}}$(其中p2+q2≠0),且存在公差不為0的無(wú)窮等差數(shù)列{an},使得函數(shù)在其定義域內(nèi)還可以表示為f(x)=1+a1x+a2x+a2x2+…+anxn+…
(1)求a1,a2的值(用p,q表示);
(2)求{an}的通項(xiàng)公式;
(3)當(dāng)n∈N*且n≥2時(shí),比較(an-1an與(an)${\;}^{{a}_{n-1}}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.某學(xué)校小學(xué)部有270人,初中部有360人,高中部有300人,為了調(diào)查學(xué)生身體發(fā)育狀況的某項(xiàng)指標(biāo),若從初中部抽取了12人,則從該校應(yīng)一共抽取31人進(jìn)行該項(xiàng)調(diào)查.

查看答案和解析>>

同步練習(xí)冊(cè)答案