用函數(shù)單調(diào)性的定義證明函數(shù)f(x)=
x-1
x
在(-∞,0)上是增函數(shù).
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)x1<x2<0,然后通過作差判斷f(x1)和f(x2)的大小關(guān)系即可.
解答: 證明:設(shè)x1,x2∈(-∞,0),且x1<x2,則:
f(x1)-f(x2)=
x1-1
x1
-
x2-1
x2
=
x1-x2
x1x2

∵x1<x2<0;
∴x1x2>0,x1-x2<0;
∴f(x1)<f(x2);
∴f(x)在(-∞,0)上是增函數(shù).
點(diǎn)評(píng):考查增函數(shù)的定義,以及利用定義證明函數(shù)單調(diào)性的過程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2,b=
2
,∠A=
π
4
,則△ABC的面積S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
2i
1+i
,則該復(fù)數(shù)的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

斜率為2的直線l在雙曲線
x2
3
-
y2
2
=1上截得的弦長(zhǎng)為
6
,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
x+2y-4≤0
x≥0
y≥0
,則z=
y+2
x-1
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log
1
2
(3+2x-x2)
的定義域是
 
,值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的長(zhǎng)軸長(zhǎng)為8,且與橢圓:
x2
25
+
y2
16
=1有相同的焦點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A(-1,2),F(xiàn)為橢圓C的右焦點(diǎn),P為橢圓C上一點(diǎn),求|PA|+
4
3
|PF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,B為銳角且
3
a=2bsinA
(1)求角B的大小;
(2)設(shè)a+c=3,b=2
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asinx-x+b(a,b均為正常數(shù)).
(1)求證:函數(shù)f(x)在(0,a+b]內(nèi)至少有一個(gè)零點(diǎn);
(2)設(shè)函數(shù)在x=
π
3
處有極值.
①對(duì)于一切x∈[0,
π
2
],不等式f(x)>
2
sin(x+
π
4
)恒成立,求b的取值范圍;
②若函數(shù)f(x)在區(qū)間(
m-1
3
π,
2m-1
3
π)上是單調(diào)增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案