1.已知正數(shù)組成的等比數(shù)列{an},若a2•a19=100,那么a8+a13的最小值為( 。
A.20B.25C.50D.不存在

分析 由正數(shù)組成的等比數(shù)列{an},可得a2•a19=100=a8a13,利用基本不等式的性質(zhì)即可得出.

解答 解:正數(shù)組成的等比數(shù)列{an},∵a2•a19=100,∴a2•a19=100=a8a13
∴a8+a13≥2$\sqrt{{a}_{8}{a}_{13}}$=20,當(dāng)且僅當(dāng)a8=a13=10時(shí),a8+a13的最小值為20,
故選:A.

點(diǎn)評 本題考查了等比數(shù)列的性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)是5元,銷售單價(jià)與日均銷售量的關(guān)系如下表所示.
銷售單價(jià)/元6789101112
日均銷售量/桶480440400360320280240
請根據(jù)以上數(shù)據(jù)分析,這個(gè)經(jīng)營部定價(jià)在11.5元/桶才能獲得最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知(1-2x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,則a3+a4等于(  )
A.0B.-240C.-480D.960

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在多面體ABCDM中,△BCD是等邊三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD,點(diǎn)O為CD的中點(diǎn),連接OM.
(Ⅰ)求證:OM∥平面ABD;
(Ⅱ)若AB=BC=2,求三棱錐A-BDM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)、右頂點(diǎn)、虛軸的一個(gè)端點(diǎn)所組成的三角形叫做雙曲線的“黃金三角形”,則雙曲線C:x2-y2=4的“黃金三角形”的面積是( 。
A.$\sqrt{2}$-1B.2$\sqrt{2}$-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,a,b,c分別為角A,B,C的對邊,cos2A=cosA,a=2$\sqrt{3}$,4$\sqrt{3}$S△ABC=a2+b2-c2
(1)求角A;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.各項(xiàng)均為正數(shù)的等差數(shù)列{an}中,2a6+2a8=a72,則a7=( 。
A.2B.4C.16D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,平面PBC⊥平面ABCD,PB=PC=$\sqrt{2}$,E是PB的中點(diǎn),AD∥BC,AD⊥CD,BC=2CD=2AD=2.
(Ⅰ)求證:AE∥平面PCD;
(Ⅱ)設(shè)F是線段CD上的點(diǎn),若CF=$\frac{1}{3}$CD,求三棱錐F-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三棱錐P-ABC中,D、E分別是三角形PAC和三角形ABC的外心,則下列判斷一定正確的是(  )
A.DE∥PBB.當(dāng)AB=BC且PA=AC時(shí)DE∥PB
C.當(dāng)且僅當(dāng)AB=BC且PA=AC時(shí),DE⊥ACD.DE⊥AC

查看答案和解析>>

同步練習(xí)冊答案