18.已知p:a≤2,q:a(a-2)≤0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 對于q:a(a-2)≤0,解得0≤a≤2,即可判斷出正誤.

解答 解:對于q:a(a-2)≤0,解得0≤a≤2,
∴p是q的必要不充分條件.
故選:B.

點評 本題考查了簡易邏輯的判定方法、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知z=m+1+(3m-2)i(m∈R).
(1)若|z|≤5,求實數(shù)m的取值范圍;
(2)求|z|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)=$\frac{co{s}^{2}(nπ+x)•si{n}^{2}(nπ-x)}{co{s}^{2}[(2n+1)π-x]}$(n∈Z).
(1)化簡f(x)的表達式;       
(2)求f($\frac{π}{2016}$)+f($\frac{1007}{2016}$π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知$sinα=\frac{15}{17},α∈(\frac{π}{2},π),cosβ=\frac{3}{5},β∈(0,\frac{π}{2})$,則cos(α-β)=$\frac{36}{85}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.集合A=$\{x|lnx≥1\},B=\{x|\sqrt{x}<2\}$,則A∩B=( 。
A.(e,4)B.[e,4)C.[1,+∞)D.[1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a=log${\;}_{\frac{1}{2}}$5,b=($\frac{1}{3}$)0.3,c=2${\;}^{\frac{1}{5}}$,則( 。
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知定義在R上的函數(shù)g(x)=f(x)-x3,且g(x)為奇函數(shù)
(1)判斷函數(shù)f(x)的奇偶性;
(2)若x>0時,f(x)=2x,求當x<0時,函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)$f(x)=sin({ωx-\frac{2π}{3}})({ω>0})$在$({\frac{π}{2},\frac{2π}{3}})$上單調遞增,則ω的取值范圍為$[{\frac{1}{3},\frac{7}{4}}]∪[{\frac{13}{3},\frac{19}{4}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若直線經過點A(2,-3)、B(1,4),則直線的斜截式方程為y=-7x+11.

查看答案和解析>>

同步練習冊答案