7.已知圓C的方程為(x-3)2+(y-4)2=22,平面上有A(1,0),B(-1,0)兩點,點Q在圓C上,則△ABQ的面積的最大值是(  )
A.6B.3C.2D.1

分析 求出Q到AB的最大距離,即可求出△ABQ的面積的最大值.

解答 解:由題意,Q到AB的最大距離為4+2=6,
∵|AB|=2,∴△ABQ的面積的最大值是$\frac{1}{2}×2×6$=6,
故選:A.

點評 本題考查三角形面積的計算,考查圓的方程,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.把函數(shù)y=sin(x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個單位長度,再將圖象上所有點的橫坐標縮短為原來的$\frac{1}{2}$倍(縱坐標不變)得到函數(shù)f(x)的圖象.
(Ⅰ)寫出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0,$\frac{5π}{6}$]時,關于x的方程f(x)-m=0有兩個不等的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=sinωx+λcosωx,其圖象的一個對稱中心到最近的一條對稱軸的距離為$\frac{π}{4}$,且在x=$\frac{π}{12}$處取得最大值.
(1)求λ的值.
(2)設$g(x)=af(x)+cos(4x-\frac{π}{3})$在區(qū)間$(\frac{π}{4},\frac{π}{3})$上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知$\frac{a+2i}{i}$=b+i(a,b是實數(shù)),其中i是虛數(shù)單位,則ab=( 。
A.-2B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{x}{{e}^{x}}$(e是對自然對數(shù)的底數(shù)),則其導函數(shù)f'(x)=(  )
A.$\frac{1+x}{{e}^{x}}$B.$\frac{1-x}{{e}^{x}}$C.1+xD.1-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知實數(shù)x,y滿足$\left\{\begin{array}{l}2x-y+4≥0\\ x-2y-5≤0\\ x+2y-4≤0\end{array}\right.$,則z=2x+3y的最大值與最小值之差為( 。
A.-$\frac{68}{3}$B.$\frac{371}{12}$C.$\frac{33}{4}$D.$\frac{28}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+sin(\frac{π}{4}+x)sin(\frac{π}{4}-x)$.
( I)求函數(shù)f(x)對稱軸方程和單調遞增區(qū)間;
( II)對任意$x∈[-\frac{π}{6},\frac{π}{6}]$,f(x)-m≥0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,矩形AnBnCnDn的一邊AnBn在x軸上,另外兩個頂點Cn,Dn在函數(shù)f(x)=x+$\frac{1}{2x}({x>0})$的圖象上.若點Bn的坐標為(n,0)(n∈N*),記矩形AnBnCnDn的周長為an,則a1+a2+…+a10( 。
A.208B.212C.216D.220

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)$f(x)=2sin({ωx+φ})({ω>0,-\frac{π}{2}<φ<\frac{π}{2}})$的部分圖象如圖所示,則下列結論錯誤的是( 。
A.$φ=-\frac{π}{4}$
B.函數(shù)f(x)在$[{-\frac{π}{4},\frac{3π}{4}}]$上單調遞增
C.函數(shù)f(x)的一條對稱軸是$x=\frac{3π}{4}$
D.為了得到函數(shù)f(x)的圖象,只需將函數(shù)y=2cosx的圖象向右平移$\frac{π}{4}$個單位

查看答案和解析>>

同步練習冊答案