分析 由三視圖可知:平面ABCD⊥平面ABFE,AD⊥平面ABFE,四邊形ABCD是邊長(zhǎng)為2的正方形,底面ABFE是邊長(zhǎng)為2的正方形,M,N分別為AF,BC的中點(diǎn).
(1)取BF的中點(diǎn)P,連接MP,NP.又M,N分別為AF,BC的中點(diǎn).利用三角形中位線定理、面面平行的判定定理可得:平面MNP∥平面CDEF,即可證明MN∥平面CDEF.
(2)作AQ⊥DE,垂足為Q,利用線面垂直的判定與性質(zhì)定理可得:AQ⊥平面CDEF.即可得出多面體A-CDEF的體積.
解答 解:由三視圖可知:平面ABCD⊥平面ABFE,AD⊥平面ABFE.
四邊形ABCD是邊長(zhǎng)為2的正方形,底面ABFE是邊長(zhǎng)為2的正方形,M,N分別為AF,BC的中點(diǎn).
(1)證明:取BF的中點(diǎn)P,連接MP,NP.
又M,N分別為AF,BC的中點(diǎn).
∴NP∥CF,MP∥AB,
又AB∥EF,
可得MP∥EF.
又MP∩NP=P,MP?平面CDEF,NP?平面CDEF.
∴平面MNP∥平面CDEF;
∴MN∥平面CDEF.
(2)解:作AQ⊥DE,垂足為Q,
∵AD⊥平面ABFE,∴AD⊥EF.
又FE⊥AE,AD∩AE,
∴FE⊥平面ADE,
∴FE⊥AQ,
∴AQ⊥平面CDEF.
∵S四邊形CDEF=EF•DE=4×$2\sqrt{2}$=8$\sqrt{2}$.
∴AQ=$\frac{4×4}{4\sqrt{2}}$=2$\sqrt{2}$.
∴VA-CDEF=$\frac{1}{3}×4×4\sqrt{2}×2\sqrt{2}$=$\frac{64}{3}$.
點(diǎn)評(píng) 本題考查了線面面面平行與垂直的判定及其性質(zhì)定理、二面角、四棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,0] | B. | [-$\sqrt{2},0$] | C. | [-$\sqrt{5}$,1] | D. | [1-$\sqrt{5}$,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z) | B. | [kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z) | ||
C. | [2kπ+π,2kπ+2π](k∈Z) | D. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 64種 | B. | 81種 | C. | 24種 | D. | 4種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | $-\sqrt{2}$ | D. | .$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com