A. | [2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z) | B. | [kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z) | ||
C. | [2kπ+π,2kπ+2π](k∈Z) | D. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z) |
分析 本題即求函數(shù)t=sin2x的減區(qū)間,再利用正弦函數(shù)的減區(qū)間求得結(jié)果.
解答 解:函數(shù)y=sin(-2x)=-sin2x 的單調(diào)遞增區(qū)間,即函數(shù)t=sin2x的減區(qū)間,
令2kπ+$\frac{π}{2}$≤2x≤2kπ+$\frac{3π}{2}$,k∈Z,求得 kπ+$\frac{π}{4}$≤x≤kπ+$\frac{3π}{4}$,
可得函數(shù)t=sin2x的減區(qū)間為[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z),
故選:B.
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 假設(shè)至少有一個(gè)鈍角 | |
B. | 假設(shè)至少有兩個(gè)鈍角 | |
C. | 假設(shè)沒有一個(gè)鈍角 | |
D. | 假設(shè)沒有一個(gè)鈍角或至少有兩個(gè)鈍角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{9}{13}$ | D. | $\frac{13}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂直于同一條直線的兩條直線平行 | B. | 垂直于同一個(gè)平面的兩條直線平行 | ||
C. | 平行于同一個(gè)平面的兩條直線平行 | D. | 平行于同一條直線的兩個(gè)平面平行 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com