2.設(shè)數(shù)列{an}滿足a1=1,an=2an+1,設(shè)bn=log2an,則數(shù)列{bn}的前n項之和是( 。
A.$\frac{n(n-1)}{2}$B.$\frac{n(1-n)}{2}$C.n-1D.$\frac{n(n+1)}{2}$

分析 由已知數(shù)列遞推式可得數(shù)列{an}是以1為首項,以$\frac{1}{2}$為公比的等比數(shù)列,求其通項公式后代入bn=log2an,再由等差數(shù)列的前n項和得答案.

解答 解:由an=2an+1,得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1}{2}$,
又a1=1,
∴數(shù)列{an}是以1為首項,以$\frac{1}{2}$為公比的等比數(shù)列,
則${a}_{n}=(\frac{1}{2})^{n-1}$.
∴bn=log2an=$lo{g}_{2}(\frac{1}{2})^{n-1}=1-n$.
∴數(shù)列{bn}的前n項之和是Sn=(1-1)+(1-2)+(1-3)+…+(1-n)
=n-(1+2+3+…+n)=n-$\frac{n(n+1)}{2}$=$\frac{n(1-n)}{2}$.
故選:B.

點評 本題考查等比數(shù)列的通項公式,考查了對數(shù)的運算性質(zhì),訓(xùn)練了等差數(shù)列前n項和的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(cos20°,sin20°),$\overrightarrow$=(sin10°,cos10°).若t為實數(shù),且$\overrightarrow{u}$=$\overrightarrow{a}$+t$\overrightarrow$,則|$\overrightarrow{u}$|的最小值為( 。
A.$\sqrt{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在R上的奇函數(shù)f(x),滿足f(x-2)=-f(x),且當(dāng)x∈[0,1]時,f(x)=x2+x+sinx,若方程f(x)=m(m>0)在區(qū)間[-4,4]上有四個不同的根x1,x2,x3,x4,則x1+x2+x3+x4的值為( 。
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某城市有甲、乙、丙三個旅游景點,一位游客游覽這三個景點的概率分別是0.4、0.5、0.6,且游客是否游覽哪個景點互不影響,用ξ表示該游客離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(1)求ξ的分布列及期望;
(2)記“f(x)=2ξx+4在[-3,-1]上存在x,使f(x)=0”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x2+2x-15<0},B={x|x>1},則A∪B等于(  )
A.{x|x>-5}B.{x|1<x<2}C.{x|x>1}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=(x-x3)e|x|的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$cos(α-\frac{π}{6})+sinα=\frac{{4\sqrt{3}}}{5}$,則$sin(α+\frac{7π}{6})$的值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{4}{5}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC的三內(nèi)角A、B、C滿足sin2A+sin2B=2sin2C,那么cosC的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)拋物線y=$\frac{1}{2}$x2的焦點為F,準(zhǔn)線為l,過點F作一直線與拋物線交于A,B兩點,再分別過點A,B作拋物線的切線,這兩條切線的交點記為P.
(1)證明:直線PA與PB相互垂直,且點P在準(zhǔn)線l上;
(2)是否存在常數(shù)λ,使等式$\overrightarrow{FA}$•$\overrightarrow{FB}$=λ$\overrightarrow{FP}$2恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案