設橢圓+=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)設A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若·+·=8,求k的值.
(1) +=1 (2) k=±
【解析】
解:(1)設F(-c,0),由=,知a=c.
過點F且與x軸垂直的直線為x=-c,
代入橢圓方程有+=1,
解得y=±,
于是=,解得b=,
又a2-c2=b2,從而a=,c=1,
所以橢圓的方程為+=1.
(2)設點C(x1,y1),D(x2,y2),
由F(-1,0)得直線CD的方程為y=k(x+1).
由方程組消去y,整理得(2+3k2)x2+6k2x+3k2-6=0,
則x1+x2=-,x1x2=.
因為A(-,0),B(,0),
所以·+·=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)
=6-(2+2k2)x1x2-2k2(x1+x2)-2k2=6+.
由已知得6+=8,解得k=±.
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)試求橢圓的方程;
(2)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形DMEN面積的最大值和最小值.
(文)已知函數(shù)f(x)=x3+bx2+cx,b、c∈R,且函數(shù)f(x)在區(qū)間(-1,1)上單調遞增,在區(qū)間(1,3)上單調遞減.
(1)若b=-2,求c的值;
(2)求證:c≥3;
(3)設函數(shù)g(x)=f′(x),當x∈[-1,3]時,g(x)的最小值是-1,求b、c的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com