5.在△ABC中,已知a=2$\sqrt{3}$,b=6,A=30°,則B=( 。
A.60°B.120°C.120°或60°D.45°

分析 由已知利用正弦定理可求sinB的值,結(jié)合B的范圍由特殊角的三角函數(shù)值即可得解.

解答 解:∵a=2$\sqrt{3}$,b=6,A=30°,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{6×\frac{1}{2}}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
∵B∈(0°,180°),
∴B=120°或60°.
故選:C.

點(diǎn)評(píng) 本題主要考查了正弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.長(zhǎng)方體ABCD-A1B1C1D1中,AB=1,BC=2,BB1=3,從點(diǎn)A出發(fā)沿表面運(yùn)動(dòng)到C1點(diǎn)的最短路程是$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某市出租車的計(jì)價(jià)標(biāo)準(zhǔn)是4km以內(nèi)10元(含4km),超過(guò)4km且不超過(guò)18km的部分1.5元/km,超出18km的部分2元/km.
(1)如果不計(jì)等待時(shí)間的費(fèi)用,建立車費(fèi)y元與行車?yán)锍蘹 km的函數(shù)關(guān)系式;
(2)如果某人乘車行駛了30km,他要付多少車費(fèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=x2-(a+b)x+3a.
(1)若不等式f(x)≤0的解集為[1,3],求實(shí)數(shù)a,b的值;
(2)若b=3,求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,a=1,b=4,C=60°,則邊長(zhǎng)c=(  )
A.13B.$\sqrt{13}$C.$\sqrt{21}$D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,則目標(biāo)函數(shù)z=x-3y的最大值為5 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=nan-n(n-1).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別求出an的表達(dá)式;
(2)設(shè)數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和為Pn,求證:Pn<$\frac{1}{2}$;
(3)設(shè)Cn=$\frac{{a}_{n}}{{2}^{n}}$,Tn=C1+C2+…+Cn,試比較Tn與$\frac{n}{{{2^{n-1}}}}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a6=-3,S6=12,則a5等于( 。
A.-3B.-1C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知定義在R上的奇函數(shù)f(x)滿足f(x+3)=-f(x),若f(1)>3,$f(11)=\frac{2a-1}{3-a}$,則實(shí)數(shù)a的取值范圍為( 。
A.3<a<8B.a<3或a>8C.2<a<3D.a<2或a>3

查看答案和解析>>

同步練習(xí)冊(cè)答案