12.已知f(x)是定義在R上的奇函數(shù),且x>0時有f(1)=0,xf′(x)-f(x)>0,則不等式f(x)>0的解集是(-1,0)∪(1,+∞).

分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{x}$,求出導(dǎo)函數(shù),根據(jù)單調(diào)性得出函數(shù)g(x)的解集,最后根據(jù)等價性得出答案.

解答 解:令g(x)=$\frac{f(x)}{x}$,
∴g(x)為偶函數(shù),g'(x)=$\frac{f'(x)x-f(x)}{{x}^{2}}$,
當(dāng)x>0時,g'(x)>0,函數(shù)遞增,且g(1)=0,
g(x)>0的解集等價于f(x)>0的解集即(1,+∞),
根據(jù)偶函數(shù)的性質(zhì)可知當(dāng)x<0時,
g(x)>0的解集等價于f(x)>0的解集為(-1,0),
故答案為:(-1,0)∪(1,+∞).

點評 本題考查了利用構(gòu)造函數(shù)解決問題,對條件的分析,轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}}$(α為參數(shù)),過點P(1,0)的直線l交曲線C于A,B兩點.
(1)將曲線C的參數(shù)方程化為普通方程;
(2)求|PA|•|PB|的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知三棱錐A-BCD中,AB、AC、AD兩兩垂直且長度均為10,定長為m(m<6)的線段MN的一個端點M在棱AB上運動,另一個端點N在△ACD內(nèi)運動(含邊界),線段MN的中點P的軌跡的面積為2π,則m的值等于4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中對于任意正整數(shù)n都有an+1=${a}_{n}^{2}$+can,其中c為實常數(shù).
(Ⅰ)若c=2,a1=1,求數(shù)列{an}的通項公式;
(Ⅱ)若c=0,記Tn=(a1-a2)a3+(a2-a3)a4+…+(an-an+1)an+2,證明:
1)當(dāng)0<a1≤$\frac{1}{2}$時,Tn<$\frac{1}{32}$;
2)當(dāng)$\frac{1}{2}$<a1<1時,Tn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖y=f(x)的導(dǎo)函數(shù)的圖象,現(xiàn)有四種說法:
(1)f(x)在(-3,1)上是增函數(shù);
(2)x=-1是f(x)的極小值點;
(3)f(x)在(2,4)上是減函數(shù),在(-1,2)上是增函數(shù);
(4)x=2是f(x)的極小值點;
以上正確的序號為( 。
A.(1)(2)B.(2)(3)C.(3)(4)D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.定義g(x)=f(x)-x的零點x0為f(x)的不動點,已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)的不動點;
(2)對于任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求實數(shù)a的取值范圍;
(3)若函數(shù)g(x)只有一個零點且b>1,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓的極坐標(biāo)方程為ρ2-4$\sqrt{2}$ρsin($\frac{3π}{4}$-θ)+6=0.
(1)將極坐標(biāo)方程化為圓的直角坐標(biāo)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$ax2+4x-lnx.
(1)當(dāng)a=-3時,求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≠0時,若f(x)是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(cosx,-sinx).
(1)若函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$+1,求函數(shù)f(x)的周期和最值;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,且x∈[$\frac{π}{6}$,$\frac{2π}{3}$],求x的值.

查看答案和解析>>

同步練習(xí)冊答案