18.設(shè)$\overrightarrow{OA}$=(1,1),$\overrightarrow{OB}$=(3,0),$\overrightarrow{OC}$=(3,5)其中O為坐標(biāo)原點(diǎn).
(1)求證:$\overrightarrow{AB}$⊥$\overrightarrow{AC}$;
(2)求三角形ABC的面積;
(3)對(duì)于向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),定義一種運(yùn)算:將x1y1-x2y2的絕對(duì)值記為f($\overrightarrow{a}$•$\overrightarrow$),試計(jì)算f($\overrightarrow{AB}$•$\overrightarrow{AC}$)的值.

分析 (1)計(jì)算$\overrightarrow{AB}$•$\overrightarrow{AC}$=0即可;
(2)求出$\overrightarrow{AB}$和$\overrightarrow{AC}$的模,即三角形的兩個(gè)直角邊,代入面積公式計(jì)算;
(3)依據(jù)新定義計(jì)算即可.

解答 解:(1)∵$\overrightarrow{OA}$=(1,1),$\overrightarrow{OB}$=(3,0),$\overrightarrow{OC}$=(3,5),
∴$\overrightarrow{AB}$=$\overrightarrow{OB}-\overrightarrow{OA}$=(2,-1),$\overrightarrow{AC}$=$\overrightarrow{OC}-\overrightarrow{OA}$=(2,4).
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=2×2-1×4=0,∴$\overrightarrow{AB}$⊥$\overrightarrow{AC}$.
(2)$\overrightarrow{|AB|}$=$\sqrt{{2}^{2}+(-1)^{2}}$=$\sqrt{5}$,$\overrightarrow{|AC|}$=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,
∴S△ABC=$\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|=5.
(3)f($\overrightarrow{AB}•\overrightarrow{AC}$)=|2×2-(-1)×4|=8.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,模長(zhǎng)計(jì)算及新定義運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若P在Q的北偏東44°,則Q在P的(  )
A.東偏北46°B.東偏北44°C.西偏南44°D.南偏西44°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.集合A={(x,y)|x-y+4≥0},B={(x,y)|y≥x(x-2)},則集合A∩B的所有元素組成的圖形的面積是( 。
A.$\frac{43}{2}$B.$\frac{55}{2}$C.$\frac{125}{6}$D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在(x+y)2(2x+y)3的展開式中,x2y3的系數(shù)為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某學(xué)校閱覽室訂有甲,乙兩類雜志,據(jù)調(diào)查,該校學(xué)生中有70%閱讀甲雜志,有45%閱讀乙雜志,有22%兼讀甲,乙兩類雜志.求學(xué)生中至少讀其中一類雜志的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,在△ABC中,點(diǎn)M是BC的中點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,點(diǎn)N在AC上,且AN=2NC,AM與BN相交于點(diǎn)P,AP=λAM,求
(1)λ的值;
(2)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{CP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如果點(diǎn)P(sinθ+cosθ,sinθcosθ)位于第二象限,那么角θ所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖在四棱臺(tái)ABCD-A1B1C1D1中,AA1⊥平面ABCD,兩底面均為正方形,AB=AA1=2A1B1
(1)證明:CC1∥平面A1BD.
(2)在線段CC1上是否存在一點(diǎn)P,使得AP⊥平面A1BD,若存在,求$\frac{CP}{P{C}_{1}}$的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知loga(x2-x-5)=0,則x=-2或3.

查看答案和解析>>

同步練習(xí)冊(cè)答案