10.設(shè)復(fù)數(shù)z1,z2滿足條件|z1|=1,|z2|=2,則|z1-z2|的范圍是[1,3].

分析 直接利用復(fù)數(shù)的模的幾何意義,判斷求解即可.

解答 解:復(fù)數(shù)z1,z2滿足條件|z1|=1,|z2|=2,說(shuō)明兩個(gè)復(fù)數(shù)的對(duì)應(yīng)點(diǎn)是兩個(gè)同心圓,半徑分別為1,2,
|z1-z2|的范圍是:[1,3].
故答案為:[1,3].

點(diǎn)評(píng) 本題考查復(fù)數(shù)的模的幾何意義,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè) Pn(xn,yn)是直線2x-y=$\frac{n}{n+1}$(n∈N*)與圓x2+y2=2在第一象限的交點(diǎn),則極限$\lim_{n→∞}\frac{{{y_n}-1}}{{{x_n}-1}}$=( 。
A.-1B.-$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.給出下列兩個(gè)推理:
①在△ABC中,若D為BC的中點(diǎn),則$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),由此推測(cè):在空間四面體ABCD中,若M為△BCD的重心,則$\overrightarrow{AM}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AD}$).
②無(wú)根不循環(huán)小數(shù)都是無(wú)理數(shù),因?yàn)閑=2.7182818459045…是無(wú)限不循環(huán)小數(shù),所以e是無(wú)理數(shù).
對(duì)于上述兩個(gè)推理,下列判斷正確的是( 。
A.①是類比推理,②是歸納推理B.①是類比推理,②是演繹推理
C.①是歸納推理,②是演繹推理D.①是演繹推理,②是類比推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知銳角三角形ABC中,sin(A+B)=$\frac{3}{5}$,sin(A-B)=$\frac{1}{5}$,若AB=12,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在祖國(guó)60年國(guó)慶慶典晚會(huì)上,需制作表演道具,如圖.將一塊邊長(zhǎng)為12的正方形紙ABCD的頂點(diǎn)A折疊至邊上的點(diǎn)E,使DE=5,折痕為PQ,則線段PM和MQ的比是( 。
A.5:12B.5:13C.5:19D.5:21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知a>0且a≠1,命題“?x>1,logax>0”的否定是(  )
A.?x≤1,logax>0B.?x>1,loga≤0C.?x≤1,logax>0D.?x>1,logax≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知兩點(diǎn)A(-m,0),B(m,0)(m>0),如果在直線3x+4y+25=0上存在點(diǎn)P,使得∠APB=90°,則m的取值范圍是[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在數(shù)列{an}中,Sn為它的前n項(xiàng)和,已知a2=3,a3=7,且數(shù)列{an+1}是等比數(shù)列,則a1=1,an=2n-1,Sn2n+1-2-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)f(x)=$\left\{\begin{array}{l}{{2}^{x+1}(x≥0)}\\{f(x+1)+2(x<0)}\end{array}\right.$,則f(-$\frac{2015}{2}$)=2$\sqrt{2}$+2016.

查看答案和解析>>

同步練習(xí)冊(cè)答案