【題目】4月23日是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng).為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個(gè)小組中隨機(jī)抽取10名學(xué)生參加問(wèn)卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:

(1)從參加問(wèn)卷調(diào)查的10名學(xué)生中隨機(jī)抽取兩名,求這兩名學(xué)生來(lái)自同一個(gè)小組的概率;

(2)在參加問(wèn)卷調(diào)查的10名學(xué)生中,從來(lái)自甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取兩名,用表示抽得甲組學(xué)生的人數(shù),的分布列和數(shù)學(xué)期望.

【答案】(1);(2)答案見(jiàn)解析.

【解析】試題分析:(1)從參加問(wèn)卷調(diào)查的10名學(xué)生中隨機(jī)抽取兩名的取法共有,來(lái)自同一小組的取法共有,所以.(2)的可能取值為0,1,2,

,,寫(xiě)出分布列,求出期望。

試題解析:

(1)由已知得,問(wèn)卷調(diào)查中,從四個(gè)小組中抽取的人數(shù)分別為3,4,2,1,

從參加問(wèn)卷調(diào)查的10名學(xué)生中隨機(jī)抽取兩名的取法共有,

這兩名學(xué)生來(lái)自同一小組的取法共有

所以.

(2)由(1)知,在參加問(wèn)卷調(diào)查的10名學(xué)生中,來(lái)自甲、丙兩小組的學(xué)生人數(shù)分別為3,2.

的可能取值為0,1,2,

,.

的分布列為

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究函數(shù),上的最小值,并確定取得最小值時(shí)的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

14

7

5.34

5.11

5.01

5

5.01

5.04

5.08

5.67

7

8.6

12.14

1)觀察表中值隨值變化趨勢(shì)特點(diǎn),請(qǐng)你直接寫(xiě)出函數(shù),的單調(diào)區(qū)間,并指出當(dāng)取何值時(shí)函數(shù)的最小值為多少;

2)用單調(diào)性定義證明函數(shù)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2018·江西聯(lián)考]交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

20

10

10

20

15

5

以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問(wèn)題:

(1)按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,.某同學(xué)家里有一輛該品牌車且車齡剛滿三年,記X為該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元:

①若該銷售商購(gòu)進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購(gòu)進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤(rùn)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)老師給出一個(gè)函數(shù),甲、乙、丙、丁四個(gè)同學(xué)各說(shuō)出了這個(gè)函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對(duì)稱;。不是函數(shù)的最小值.老師說(shuō):你們四個(gè)同學(xué)中恰好有三個(gè)人說(shuō)的正確.那么,你認(rèn)為____說(shuō)的是錯(cuò)誤的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的圖像過(guò)點(diǎn),且在點(diǎn)處的切線方程為.

1)求的解析式;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x+1,那么不等式2f(x)﹣10的解集是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線l的方程為,圓O的方程為

(1)當(dāng)m取一切實(shí)數(shù)時(shí),直線l與圓O都有公共點(diǎn),求r的取值范圍;

(2)當(dāng)時(shí),直線與圓O交于M,N兩點(diǎn),若,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的無(wú)窮數(shù)列的前項(xiàng)和為,且滿足(其中為常數(shù)), .數(shù)列滿足.

(1)證明數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;

(2)若無(wú)窮等比數(shù)列滿足:對(duì)任意的,數(shù)列中總存在兩個(gè)不同的項(xiàng) 使得,求的公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的離心率為,過(guò)左焦點(diǎn)且斜率為的直線交橢圓兩點(diǎn),線段的中點(diǎn)為,直線交橢圓兩點(diǎn).

(1)求橢圓的方程;

(2)求證:點(diǎn)在直線上;

(3)是否存在實(shí)數(shù),使得?若存在,求出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案