分析 (1)利用賦值法求f(0)的值,即可判斷f(x)的奇偶性;
(2)根據(jù)函數(shù)單調(diào)性的定義即可判斷函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性和最值之間的關(guān)系即可得到結(jié)論;
(3)利用f(m)+$\frac{1}{2}$f(9)>$\frac{1}{2}$f(m2)+f(3),可得f(2m+9)>f(m2+6),根據(jù)f(x)在R上是減函數(shù),即可得出結(jié)論.
解答 解:(1)令x=y=0,可得f(0)=0,
令y=-x,可得f(0)=f(x)+f(-x)=0,∴f(x)是奇函數(shù);
(2)設(shè)x1>x2,f(x)+f(y)=f(x+y),令x=x2,x+y=x1,
則y=x1-x2>0,
∴f(x2)+f(x1-x2)=f(x1),
∴f(x1)-f(x2)=f(x1-x2)<0,
∴f(x)在R上是減函數(shù);
∵f(-3)=3f(-1)=6,f(5)=5f(1)=-10,
∴最大值為f(-3)=6,最小值為f(5)=-10;
(3)∵f(m)+$\frac{1}{2}$f(9)>$\frac{1}{2}$f(m2)+f(3),
∴2f(m)+f(9)>f(m2)+2f(3),
∴f(2m+9)>f(m2+6),
∵f(x)在R上是減函數(shù),
∴2m+9<m2+6,
∴m<-1或m>3.
點(diǎn)評(píng) 本題主要考查抽象函數(shù)的應(yīng)用,根據(jù)定義法和賦值法是解決抽象函數(shù)問題的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 60 | C. | 90 | D. | 180 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,1] | B. | (-$\frac{1}{3}$,$\frac{1}{3}$) | C. | (-$\frac{1}{3}$,1) | D. | (-∞,-$\frac{1}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com