17.若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于實軸對稱,z1=2-i,則z1•z2=(  )
A.-5B.5C.-4+iD.-4-i

分析 復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于實軸對稱,z1=2-i,可得z2=2+i.再利用復(fù)數(shù)的運算法則即可得出.

解答 解:∵復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于實軸對稱,z1=2-i,∴z2=2+i.
則z1•z2=(2-i)(2+i)=22+12=5.
故選:B.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC中,A(1,3),BC邊所在的直線方程為y-1=0,AB邊上的中線所在的直線方程為x-3y+4=0.
(Ⅰ)求B,C點的坐標(biāo);
(Ⅱ)求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.以點(2,-1)為圓心,且與直線x+y=7相切的圓的方程是(x-2)2+(y+1)2=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定義域為R的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù),f(1)=-$\frac{1}{3}$.
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知an=($\frac{1}{3}$)n,把數(shù)列{an}的各項排成如圖的三角形,記A(s,t)表示第s行的第t個數(shù),則A(11,12)=(  )
A.($\frac{1}{3}$)67B.($\frac{1}{3}$)68C.($\frac{1}{3}$)112D.($\frac{1}{3}$)113

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.《九章算術(shù)》之后,人們學(xué)會了用數(shù)列的知識來解決問題.公元5世紀(jì)中國古代內(nèi)容豐富的數(shù)學(xué)著作《張丘建算經(jīng)》卷上有題為:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”.利用這種思想設(shè)計的一個程序框圖如圖,若輸出的S值為九匹三丈(一匹=4丈,一丈=10尺),則框圖中d為( 。
A.$\frac{1}{2}$尺B.$\frac{8}{15}$尺C.$\frac{16}{31}$尺D.$\frac{16}{29}$尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a,b,c,d是四條不同的直線,且a,b為異面直線,命題p“c與a,b都相交,d與a,b都相交”,命題q“c,d為相交直線”,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某質(zhì)點的位移函數(shù)是s(t)=2t3-$\frac{1}{2}$gt2(g=10m/s2),則當(dāng)t=3s時,它的速度是24m/s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知四棱錐P-ABCD,地面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(Ⅱ)若AB=2,PA=2,求四面體P-AEF的體積.

查看答案和解析>>

同步練習(xí)冊答案