分析 (I)通過證明AE⊥平面PAD得出AE⊥PD;
(II)連接PE,證明BC⊥平面PAE,于是VP-AEF=VF-PAE=$\frac{1}{2}$VC-PAE.
解答 證明:(I)∵底面ABCD是菱形,∠ABC=60°,
∴△ABC是等邊三角形,
∵E是BC的中點(diǎn),
∴AE⊥BC,又BC∥AD,
∴AE⊥AD,
∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE,
又PA?平面PAD,AD?平面PAD,PA∩AD=A,
∴AE⊥平面PAD,又PD?平面PAD,
∴AE⊥PD.
(II)連接PE,
∵PA⊥平面ABCD,BC?平面ABCD,
∴PA⊥BC,又AE⊥BC,
∴BC⊥平面PAE,
∵四邊形ABCD是菱形,AB=PA=2,∠ABC=60°,
∴AE=$\sqrt{3}$,
∴VC-PAE=$\frac{1}{3}$S△PAE•CE=$\frac{1}{3}×\frac{1}{2}×\sqrt{3}×2×1$=$\frac{\sqrt{3}}{3}$.
∵F是PC的中點(diǎn),
∴VP-AEF=VF-PAE=$\frac{1}{2}$VC-PAE=$\frac{\sqrt{3}}{6}$.
點(diǎn)評(píng) 本題考查了線面垂直的判定與性質(zhì),棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | 5 | C. | -4+i | D. | -4-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線的傾斜角的取值范圍是[0°,180°] | |
B. | 若直線的傾斜角為90°,則這條直線與y軸平行 | |
C. | 任意一條直線都有傾斜角和斜率 | |
D. | 若直線l的傾斜角為銳角,則它的斜率大于0;若直線l的傾斜角為鈍角,則它的斜率小于0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,3) | C. | {-3,3} | D. | (1,4) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com