分析 (I)先證明BF⊥AC,再證明BF⊥CK,進(jìn)而得到BF⊥平面ACFD.
(II)方法一:先找二面角B-AD-F的平面角,再在Rt△BQF中計(jì)算,即可得出;
方法二:通過建立空間直角坐標(biāo)系,分別計(jì)算平面ACK與平面ABK的法向量,進(jìn)而可得二面角B-AD-F的平面角的余弦值.
解答 (I)證明:延長AD,BE,CF相交于點(diǎn)K,如圖所示,∵平面BCFE⊥平面ABC,∠ACB=90°,
∴AC⊥平面BCK,∴BF⊥AC.
又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK為等邊三角形,且F為CK的中點(diǎn),則BF⊥CK,
∴BF⊥平面ACFD.
(II)方法一:過點(diǎn)F作FQ⊥AK,連接BQ,∵BF⊥平面ACFD.∴BF⊥AK,則AK⊥平面BQF,
∴BQ⊥AK.∴∠BQF是二面角B-AD-F的平面角.
在Rt△ACK中,AC=3,CK=2,可得FQ=$\frac{2\sqrt{13}}{13}$.
在Rt△BQF中,BF=$\sqrt{3}$,F(xiàn)Q=$\frac{2\sqrt{13}}{13}$.可得:cos∠BQF=$\frac{\sqrt{3}}{4}$.
∴二面角B-AD-F的平面角的余弦值為$\frac{\sqrt{3}}{4}$.
方法二:如圖,延長AD,BE,CF相交于點(diǎn)K,則△BCK為等邊三角形,
取BC的中點(diǎn),則KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC,
以點(diǎn)O為原點(diǎn),分別以O(shè)B,OK的方向?yàn)閤,z的正方向,建立空間直角坐標(biāo)系O-xyz.
可得:B(1,0,0),C(-1,0,0),K(0,0,$\sqrt{3}$),A(-1,-3,0),$E(\frac{1}{2},0,\frac{\sqrt{3}}{2})$,$F(-\frac{1}{2},0,\frac{\sqrt{3}}{2})$.
$\overrightarrow{AC}$=(0,3,0),$\overrightarrow{AK}$=$(1,3,\sqrt{3})$,
$\overrightarrow{AB}$=(2,3,0).
設(shè)平面ACK的法向量為$\overrightarrow{m}$=(x1,y1,z1),平面ABK的法向量為$\overrightarrow{n}$=(x2,y2,z2),由$\left\{\begin{array}{l}{\overrightarrow{AC}•\overrightarrow{m}=0}\\{\overrightarrow{AK}•\overrightarrow{m}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{3{y}_{1}=0}\\{{x}_{1}+3{y}_{1}+\sqrt{3}{z}_{1}=0}\end{array}\right.$,
取$\overrightarrow{m}$=$(\sqrt{3},0,-1)$.
由$\left\{\begin{array}{l}{\overrightarrow{AB}•\overrightarrow{n}=0}\\{\overrightarrow{AK}•\overrightarrow{n}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{2{x}_{2}+3{y}_{2}=0}\\{{x}_{2}+3{y}_{2}+\sqrt{3}{z}_{2}=0}\end{array}\right.$,取$\overrightarrow{n}$=$(3,-2,\sqrt{3})$.
∴$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{4}$.
∴二面角B-AD-F的余弦值為$\frac{\sqrt{3}}{4}$.
點(diǎn)評 本題考查了空間位置關(guān)系、法向量的應(yīng)用、空間角,考查了空間想象能力、推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m∥l | B. | m∥n | C. | n⊥l | D. | m⊥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com