分析 由冪函數(shù)f(x)為(0,+∞)上遞減,推知m2-2m-3<0,解得-1<m<3因為m為整數(shù)故m=0,1或2,又通過函數(shù)為偶函數(shù),推知m2-2m-3為偶數(shù),進而推知m2-2m為奇數(shù),進而推知m只能是1,把m代入函數(shù),即可得到f(x)的解析式.
解答 解:∵冪函數(shù)f(x)=xm2-2m-3(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是減函數(shù),
∴m2-2m-3<0,解得-1<m<3,
∵m為整數(shù),∴m=0,1或2,
又∵函數(shù)為偶函數(shù),∴m2-2m-3為偶數(shù),
∴m2-2m為奇數(shù),∴m只能是1,
把m=1代入函數(shù)f(x)=xm2-2m-3,
得f(x)=x-4.
故答案為f(x)=x-4.
點評 本題考查函數(shù)的解析式的求法,冪函數(shù)的性質(zhì)的合理運用是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{32}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相交 | B. | 平行 | C. | 垂直 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$] | B. | (0,1) | C. | [$\frac{1}{2}$,3) | D. | (0,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com