分析 (1)求出f(x)的解析式,將f(x)以及f(-x)讀法解析式代入不等式,求出不等式的解集即可;
(2)求出f(x)-f(a),根據(jù)絕對值的性質(zhì)證明即可.
解答 (1)解:函數(shù)f(x)=x2+bx+c的頂點為(1,-1),
故$\left\{\begin{array}{l}{-\frac{2}=1}\\{\frac{4c{-b}^{2}}{4}=-1}\end{array}\right.$,解得:b=-2,c=0,
故f(x)=x2-2x,
則不等式為|x2+2x|+|x2-2x|≥4|x|,
∵|x2+2x|+|x2-2x|≥|(x2+2x)-(x2-2x)|=|4x|=4|x|,
當(dāng)且僅當(dāng)x∈[-2,2]時取等號,
所以不等式恒成立,解集為x∈R.
(2)證明:|f(x)-f(a)|=|x2-2x-a2+2a|=|(x-a)(x+a-2)|
=|x-a||x+a-2|$<\frac{1}{2}|x+a-2|=\frac{1}{2}|x-a+2a-2|≤\frac{1}{2}(|x-a|+2|a|+2)$
$<\frac{1}{2}({\frac{1}{2}+2|a|+2})=|a|+\frac{5}{4}$.
點評 本題考查了二次函數(shù)的性質(zhì),考查解不等式問題以及不等式的證明,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,-3) | B. | $(-\sqrt{3},3)$ | C. | $(\sqrt{3},-3)$ | D. | $(3,-\sqrt{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 過圓心 | B. | 相交而不過圓心 | C. | 相切 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{2}π$ | B. | $\frac{13}{3}π$ | C. | $\frac{{13\sqrt{3}}}{2}π$ | D. | $\frac{{13\sqrt{3}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com