已知等差數(shù)列{an}滿足a1=3,a4+a5+a6=45.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{
1
anan+1
}的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的通項公式
專題:計算題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由a4+a5+a6=45可求a5,由等差數(shù)列通項公式可求公差d,從而可得an
(Ⅱ)表示出
1
anan+1
,拆項后利用裂項相消法可求Tn
解答: 解:(Ⅰ)∵a4+a5+a6=45,
∴3a5=45,a5=15,
∵a1=3,
∴d=
a5-a1
5-1
=
15-3
4
=3,
∴an=3n.
(Ⅱ)由(Ⅰ)an=3n,an+1=3(n+1),
1
anan+1
=
1
3n•3(n+1)
=
1
9
(
1
n
-
1
n+1
)
,
∴Tn=
1
9
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)
=
1
9
(1-
1
n+1
)
=
n
9(n+1)
點評:該題考查等差數(shù)列的通項公式、數(shù)列求和,裂項相消法對數(shù)列求和是高考考查的重點內(nèi)容,要熟練掌握.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex
(Ⅰ)當x>0時,設g(x)=f(x)-(a+1)x(a∈R).討論函數(shù)g(x)的單調性;
(Ⅱ)證明當x∈[
1
2
,1]時,f(x)<x2+x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3ax2+2bx的單調遞減區(qū)間為(-
1
3
,1),單調遞增區(qū)間為(-∞,-
1
3
)和(1,+∞),
(1)求a,b的值;
(2)若不等式f(x)≥k2+7k在區(qū)間[-2,2]上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a3=5,a5-2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=an+bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},a1=1,an+1=an+
1+p
1-p
an2(n∈N*,p∈R,p≠1).
(Ⅰ)求數(shù)列{an}為單調增數(shù)列的充要條件;
(Ⅱ)當p=
1
3
時,令bn=
1
1+2an
,數(shù)列{bn}的前n項和為Sn.求證:
1
2
-
1
5n
<Sn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在電視節(jié)目《爸爸去哪兒》中,五位爸爸各帶一名子(女)體驗鄉(xiāng)村生活.一天,村長安排1名爸爸帶3名小朋友去完成某項任務,至少要選1個女孩(5個小朋友中3男2女).Kimi(男)說我爸去我就去,我爸爸不去我就不去;石頭(男)生爸爸的氣,說我爸去我就不去,我爸爸不去我就去,若其他人都沒意見且這兩人的愿望都能滿足,那么可選的方案有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

運行如圖所示程序,輸出的結果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若aij表示n×n階矩陣
1247
35812
691318
10141925
?????ann
中第i行、第j列的元素(i、j=1,2,3,…,n),則ann=
 
(結果用含有n的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知圓的方程是x2+(y-1)2=1,若以坐標原點O為極點,x軸的正半軸為極軸,則該圓的極坐標方程可寫為
 

查看答案和解析>>

同步練習冊答案