【題目】如圖,是南北方向的一條公路,是北偏東方向的一條公路,某風(fēng)景區(qū)的一段邊界為曲線.為方便游客光,擬過(guò)曲線上的某點(diǎn)分別修建與公路,垂直的兩條道路,,且,的造價(jià)分別為5萬(wàn)元百米,40萬(wàn)元百米,建立如圖所示的直角坐標(biāo)系,則曲線符合函數(shù)模型,設(shè),修建兩條道路,的總造價(jià)為萬(wàn)元,題中所涉及的長(zhǎng)度單位均為百米.
(1)求解析式;
(2)當(dāng)為多少時(shí),總造價(jià)最低?并求出最低造價(jià).
【答案】(1);(2)當(dāng)時(shí),總造價(jià)最低,最低造價(jià)為30萬(wàn)元.
【解析】
(1)求出的坐標(biāo),直線的方程,點(diǎn)到直線的距離,即可求解析式;
(2)利用導(dǎo)數(shù)的方法最低造價(jià).
解:(1)在如圖所示的直角坐標(biāo)系中,因?yàn)榍的方程為,
所以點(diǎn)坐標(biāo)為,
直線的方程為,
則點(diǎn)到直線的距離為,
又的造價(jià)為5萬(wàn)元百米,的造價(jià)為40萬(wàn)元百米.
則兩條道路總造價(jià)為.
(2)因?yàn)?/span>,
所以,
令,得,列表如下:
4 | |||
0 | |||
單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
所以當(dāng)時(shí),函數(shù)有最小值,最小值為.
答:(1)兩條道路,總造價(jià)為;
(2)當(dāng)時(shí),總造價(jià)最低,最低造價(jià)為30萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.
(1)求點(diǎn),的極坐標(biāo);
(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國(guó)物流與采購(gòu)聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國(guó)制造業(yè)采購(gòu)經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是( )
A.12個(gè)月的PMI值不低于50%的頻率為
B.12個(gè)月的PMI值的平均值低于50%
C.12個(gè)月的PMI值的眾數(shù)為49.4%
D.12個(gè)月的PMI值的中位數(shù)為50.3%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),則關(guān)于x的方程有以下結(jié)論,其中正確的結(jié)論為( )
A.當(dāng)時(shí),方程恒有實(shí)根
B.當(dāng)時(shí),方程在內(nèi)有兩個(gè)不等實(shí)根
C.當(dāng)時(shí),方程在內(nèi)最多有9個(gè)不等實(shí)根
D.若方程在內(nèi)的實(shí)根的個(gè)數(shù)為偶數(shù),則所有實(shí)根之和為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長(zhǎng)均相等,為的中點(diǎn),、分別是、上的動(dòng)點(diǎn)(含端點(diǎn)),且滿(mǎn)足.當(dāng)、運(yùn)動(dòng)時(shí),下列結(jié)論中正確的個(gè)數(shù)是( )
①平面平面;
②三棱錐的體積為定值;
③可能為直角三角形;
④平面與平面所成的銳二面角范圍為.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知坐標(biāo)平面上動(dòng)點(diǎn)與兩個(gè)定點(diǎn), ,且.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中軌跡為,過(guò)點(diǎn)的直線被所截得的線段長(zhǎng)度為8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),直線為曲線的切線(為自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)的值;
(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)
為增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,已知點(diǎn)在直線上運(yùn)動(dòng),則下列四個(gè)命題中:①三棱錐的體積不變;②;③當(dāng)為中點(diǎn)時(shí),二面角 的余弦值為;④若正方體的棱長(zhǎng)為2,則的最小值為;其中說(shuō)法正確的是____________(寫(xiě)出所有說(shuō)法正確的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(a,bR)的導(dǎo)函數(shù)為,已知,是的兩個(gè)不同的零點(diǎn).
(1)證明:;
(2)當(dāng)b=0時(shí),若對(duì)任意x>0,不等式恒成立,求a的取值范圍;
(3)求關(guān)于x的方程的實(shí)根的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com