20.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=-1+t\end{array}$(t為參數(shù),t∈R),則直線l的普通方程為( 。
A.x-y-2=0B.x-y+2=0C.x+y=0D.x+y-2=0

分析 根據(jù)題意,由直線的參數(shù)方程,消去參數(shù)t,整理變形可得答案.

解答 解:根據(jù)題意,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=-1+t\end{array}$,
由x=1+t可得t=x-1,
將t=x-1代入y=-1+t中,可得y=-1+(x-1),即x-y-2=0,
即直線l的普通方程為x-y-2=0;
故選:A.

點(diǎn)評(píng) 本題考查直線的參數(shù)方程與普通方程的互化,關(guān)鍵是掌握參數(shù)方程與普通方程的互化的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a∈R,函數(shù)f(x)=x2(x-a).
(Ⅰ)若函數(shù)f(x)在區(qū)間(0,$\frac{2}{3}$)內(nèi)是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=2時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點(diǎn)P是雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1上一點(diǎn),過P作C的兩條漸近線的垂線,垂足分別為A,B兩點(diǎn),則$\overrightarrow{PA}$•$\overrightarrow{PB}$=( 。
A.-$\frac{12}{7}$B.$\frac{12}{7}$C.$\frac{12}{49}$D.-$\frac{12}{49}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且bc=b2+c2-a2
(1)求角A的大;
(2)若sin B+sin C=$\sqrt{3}$,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.宜昌一中為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持與不支持)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則有多大的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)”有關(guān)系( 。
附:
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)x1,x2,…,xn的平均數(shù)為$\overline{x}$,標(biāo)準(zhǔn)差是s,則另一組數(shù)2x1-3,2x2-3,…,2xn-3的平均數(shù)和標(biāo)準(zhǔn)差分別是(  )
A.2$\overline{x}$,4sB.2$\overline{x}$-3,4sC.2$\overline{x}$-3,2sD.2$\overline{x}$,s

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=-$\frac{π}{2x}$,g(x)=xcosx-sinx.當(dāng)x∈[-3π,3π]時(shí),方程f(x)=g(x)根的個(gè)數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,則f(f(3))=( 。
A.$\frac{13}{9}$B.3C.$\frac{2}{3}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(1+$\frac{1}{{x}^{2}}$)(1+x)6展開式中x2的系數(shù)為30.

查看答案和解析>>

同步練習(xí)冊(cè)答案