【題目】如圖,一個(gè)正和一個(gè)平行四邊形ABDE在同一個(gè)平面內(nèi),其中,,AB,DE的中點(diǎn)分別為F,G.現(xiàn)沿直線AB將翻折成,使二面角為,設(shè)CE中點(diǎn)為H.
(1)(i)求證:平面平面AGH;
(ii)求異面直線AB與CE所成角的正切值;
(2)求二面角的余弦值.
【答案】(1) (i)證明見解析;(ii) (2)
【解析】
(1)(i)通過證明四邊形為平行四邊形證得;通過三角形中位線證得,由此證得平面平面AGH.
(ii)根據(jù)和判斷是兩個(gè)異面直線與所成角.用勾股定理求得,利用余弦定理求得,由此求得異面直線與所成角的正切值.
(2)根據(jù)二面角的定義,判斷出即為二面角的平面角,利用余弦定理求得二面角的余弦值.
(1)(i)證明:連FD.因?yàn)?/span>ABDE為平行四邊形,F、G分別為AB、DE中點(diǎn),
所以FDGA為平行四邊形,所以.-
又H、G分別為CE、DE的中點(diǎn),所以.
FD、平面AGH,AG、平面AGH,所以平面AGH,平面AGH,而FD、平面CDF,所以平面平面AGH.
(ii)因?yàn)?/span>,所以或其補(bǔ)角即為異面直線AB與CE所成的角.
因?yàn)?/span>ABC為正三角形,,F為AB中點(diǎn),所以,,從而平面CFD,而,所以平面CFD,因?yàn)?/span>平面CFD,所以.-
由條件易得,,又為二面角的平面角,所以,所以,所以.
(2)由(1)的(ii)知平面CFD,即,,所以即為二面角的平面角.
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖像如圖所示,若,,分別為最高點(diǎn)與最低點(diǎn),為圖象與軸交點(diǎn),且的面積為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若將的圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像,求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-x3+2x2+2x,若存在滿足0≤x0≤3的實(shí)數(shù)x0,使得曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線與直線x+my-10=0垂直,則實(shí)數(shù)m的取值范圍是( )
A. [6,+∞)B. (-∞,2]
C. [2,6]D. [5,6]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l與兩直線y=1和x-y-7=0分別交于A,B兩點(diǎn),若線段AB的中點(diǎn)為M(1,-1),則直線l的斜率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn),若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓C相交于A,B兩點(diǎn),且A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,地圖上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點(diǎn)為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點(diǎn)P處有一個(gè)觀測(cè)點(diǎn),且PG=50m.在觀測(cè)點(diǎn)正前方10m處(即PD=10m)有一個(gè)高位10m(即ED=10m)的廣告牌遮住了視線,因此在觀測(cè)點(diǎn)所能看到的圓形標(biāo)志的最大部分即為圖中從A到F的圓。
(1)若圓形標(biāo)志物半徑為25m,以PG所在直線為X軸,G為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,求圓C和直線PF的方程;
(2)若在點(diǎn)P處觀測(cè)該圓形標(biāo)志的最大視角(即)的正切值為,求該圓形標(biāo)志物的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、是雙曲線的兩個(gè)頂點(diǎn),點(diǎn)是雙曲線上異于、的一點(diǎn),為坐標(biāo)原點(diǎn),射線交橢圓于點(diǎn),設(shè)直線、、、的斜率分別為、、、.
(1)若雙曲線的漸近線方程是,且過點(diǎn),求的方程;
(2)在(1)的條件下,如果,求的面積;
(3)試問:是否為定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com