已知為等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式及其前項和;
(Ⅱ)若數(shù)列滿足求數(shù)列的通項公式.
(Ⅰ) , ;(Ⅱ) .
解析試題分析:(Ⅰ)先設出等差數(shù)列的首項和公差,然后代入式子:,列方程組求出首項和公差,再根據(jù)等差數(shù)列的通項公式:以及前項和公式:求解;(Ⅱ)由式子,取為得到:,兩式相減得,,結合(Ⅰ)的結果化簡整理得,①,然后求出的值,代入①驗證,要是不符合那么就把通項寫成分段函數(shù)的形式,要是符合就合二為一寫成一個式子.
試題解析:(Ⅰ)設等差數(shù)列的首項和公差分別為,
則,解得. 2分
∴, 4分
6分
(Ⅱ)①,
②, 7分
①②得, 8分
∴, 10分
, 11分
∴. 12分
考點:1.等差數(shù)列的通項公式;2.等差數(shù)列的前項和;3.數(shù)列的遞推公式
科目:高中數(shù)學 來源: 題型:解答題
設等差數(shù)列的前項和為,滿足:.遞增的等比數(shù)列前項和為,滿足:.
(Ⅰ)求數(shù)列,的通項公式;
(Ⅱ)設數(shù)列對,均有成立,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知{an}是等差數(shù)列,a1=3,Sn是其前n項和,在各項均為正數(shù)的等比數(shù)列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求數(shù)列{an}, {bn}的通項公式;
(II)設,數(shù)列{cn}的前n項和為Tn,求證
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對于任意的(不超過數(shù)列的項數(shù)),若數(shù)列的前項和等于該數(shù)列的前項之積,則稱該數(shù)列為型數(shù)列。
(1)若數(shù)列是首項的型數(shù)列,求的值;
(2)證明:任何項數(shù)不小于3的遞增的正整數(shù)列都不是型數(shù)列;
(3)若數(shù)列是型數(shù)列,且試求與的遞推關系,并證明對恒成立。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的前項和為,若,,.
(1)求數(shù)列的通項公式:
(2)令,.
①當為何正整數(shù)值時,;
②若對一切正整數(shù),總有,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com