5.已知函數(shù)f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函數(shù),在(-∞,-2)上為減函數(shù).
(1)求f(x)的表達(dá)式;
(2)是否存在實數(shù)b使得關(guān)于x的方程f(x)=x2+x+b在區(qū)間[0,2]上恰好有兩個相異的實根,若存在,求實數(shù)b的取值范圍.

分析 (1)已知函數(shù)f(x)=(1+x)2-aln(1+x)2在(-2,1)上是增函數(shù),在(-∞,-2)上是減函數(shù),f(x)在x=-2處取得極值點,可得f′(-2)=0利用方程求出a值,從而求解;
(2)f(x)=x2+x+b,變形得x-b+1-ln(1+x)2=0,設(shè)相應(yīng)的函數(shù)為g(x),利用導(dǎo)數(shù)研究出g(x)在[0,1]上單調(diào)遞減且在[1,2]上單調(diào)遞增,可得當(dāng)g(1)<0、g(0)≥0且g(2)≥0時方程f(x)=x2+x+b在區(qū)間[0,2]上恰好有兩個相異的實根,由此建立關(guān)于b的不等式即可得出實數(shù)b的取值范圍.

解答 解:(1)∵函數(shù)f(x)=(1+x)2-aln(1+x)2,
∴f′(x)=2x+2-$\frac{2(1+x)a}{{(x+1)}^{2}}$=2(x+1)-$\frac{2a}{x+1}$,
∵函數(shù)f(x)=(1+x)2-aln(1+x)2在(-2,1)上是增函數(shù),在(-∞,-2)上是減函數(shù)
f(x)在x=-2處取得極值,
依題意得f′(2)=-2+2a=0,所以a=1,從而f(x)=(x+1)2-ln(x+1)2
(2)若存在實數(shù)b使得條件成立,
方程f(x)=x2+x+b,即x-b+1-ln(1+x)2=0,
令g(x)=x-b+1-ln(1+x)2,則g'(x)=1-$\frac{2}{x+1}$=$\frac{x-1}{x+1}$,
令g'(x)>0,得x<-1或x>1;令g'(x)<0,得-1<x<1,
∴g(x)在[0,1]上單調(diào)遞減,在[1,2]上單調(diào)遞增,
要使方程f(x)=x2+x+b在區(qū)間[0,2]上恰好有兩個相異的實根,
只需g(x)=0在區(qū)間[0,1]和[1,2]上各有一個實根,
于是有$\left\{\begin{array}{l}{g(0)≥0}\\{g(1)<0}\\{g(2)≥0}\end{array}\right.$,解得2-2ln2<b≤3-2ln3,
故存在這樣的實數(shù)b,當(dāng)2-2ln2<b≤3-2ln3時滿足條件.

點評 本題給出含有對數(shù)的基本初等函數(shù),求函數(shù)的解析式并由此討論方程根的分布.著重考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的極值與最值求法和不等式恒成立的處理等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.半徑不等的兩定圓O1、O2無公共點,動圓O與圓O1、O2都內(nèi)切,則圓心O軌跡是( 。
A.雙曲線的一支B.橢圓或圓
C.雙曲線的一支或橢圓或圓D.雙曲線一支或橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知曲線y=2x2上一點A(1,2),則A處的切線斜率為(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對任意x,y∈R,z=|x+1|-|x-1|-|y-4|-|y|的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}的前n項和為sn,且sn=1-2+3-4+…+(-1)n-1n,則s4m+s2m+1+s2m+3的值為( 。
A.4mB.4-mC.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某射手射擊所得環(huán)數(shù)ξ的分布列如下:
ξ78910
Px0.10.3y
已知ξ的數(shù)學(xué)期望E(ξ)=8.9,則y的值為( 。
A.0.8B.0.6C.0.4D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知甲、乙、丙、丁、戊、己等6人.(以下問題用數(shù)字作答)
(1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的情形?
(2)這6人同時加入6項不同的活動,每項活動限1人,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?
(3)將這6人作為輔導(dǎo)員安排到3項不同的活動中,每項活動至少安排1名輔導(dǎo)員;求丁、戊、己恰好被安排在同一項活動中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平面幾何里有射影定理:設(shè)三角形ABC的兩邊AB⊥AC,D是A點在BC上的射影,則AB2=BD•BC.拓展到空間,在四面體A-BCD中,CA⊥面ABD,點O是A在面BCD內(nèi)的射影,且O在面BCD內(nèi),類比平面三角形射影定理,得出正確的結(jié)論是( 。
A.S△ABC2=S△BOC•S△BDCB.S△ABD2=S△BOD•S△BDC
C.S△ADC2=S△DOC•S△BDCD.S△DBC2=S△ABD•S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,AD是BC邊上的中線,G是AD上的點,且$\overrightarrow{AG}$=2$\overrightarrow{GD}$.
(1)若(sinA-$\sqrt{3}$sinB)$\overrightarrow{AB}$+(sinC-2sinB)$\overrightarrow{AC}$=$\overrightarrow{0}$,判斷△ABC的形狀;
(2)若sin2B+sin2C+sinBsinC=sin2A,S△ABC=3,求AG2的最小值.

查看答案和解析>>

同步練習(xí)冊答案