15.已知p:3x2-4ax+a2<0(a>0),q:$\left\{\begin{array}{l}{{x}^{2}-4x+3<0}\\{{x}^{2}-6x+8≥0}\end{array}\right.$,若p是q的必要條件,求實(shí)數(shù)a的取值范圍.

分析 根據(jù)命題充分條件和必要條件的定義和關(guān)系,即可求實(shí)數(shù)a的取值范圍.

解答 解:由3x2-4ax+a2<0(a>0),得(x-a)(3x-a)<0,得$\frac{a}{3}$<x<a,
由$\left\{\begin{array}{l}{{x}^{2}-4x+3<0}\\{{x}^{2}-6x+8≥0}\end{array}\right.$,得$\left\{\begin{array}{l}{1<x<3}\\{x≥4或x≤2}\end{array}\right.$,即1<x≤2,
若p是q的必要條件,
則$\left\{\begin{array}{l}{\frac{a}{3}≤1}\\{a>2}\end{array}\right.$即2<a≤3,即實(shí)數(shù)a的取值范圍是(2,3].

點(diǎn)評 本題主要考查充分條件和必要條件的應(yīng)用,利用不等式的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若AB為過橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1中心的線段,點(diǎn)A、B為橢圓上的點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓的兩個(gè)焦點(diǎn),則四邊形F1AF2B面積的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知⊙O:x2+y2=4和⊙C:x2+y2-12x+27=0.
(1)判斷⊙O和⊙C的位置關(guān)系;
(2)過⊙C的圓心C作⊙O的切線l,求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象的兩個(gè)端點(diǎn)為A、B,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b,λ∈[0,1].已知向量$\overrightarrow{ON}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,若不等式|$\overrightarrow{MN}$|≤k恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性近似”,若函數(shù)y=x-$\frac{2}{x}$在[1,2]上“k階線性近似”,則實(shí)數(shù)k的取值范圍為( 。
A.[$\sqrt{2}$-1,+∞)B.[$\sqrt{2}$+1,+∞)C.[3-2$\sqrt{2}$,+∞)D.[3+2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,若b=2$\sqrt{3}$.B=120°,C=30°,則a=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平行六面體ABCD-A1B1C1D1中,化簡$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$=( 。
A.$\overrightarrow{A{C}_{1}}$B.$\overrightarrow{C{A}_{1}}$C.$\overrightarrow{B{C}_{1}}$D.$\overrightarrow{C{B}_{1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)f(x)=x4-x3的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.($\frac{1}{4}$)-0.5+8${\;}^{\frac{2}{3}}$=6,lg2+lg5-($\frac{π}{23}$)0=0,10lg2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.點(diǎn)B,F(xiàn)分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)與左焦點(diǎn),過F作x軸的垂線與橢圓交于第二象限的一點(diǎn)P,H($\frac{{a}^{2}}{c}$,0)(c為半焦距),若OP∥BH(O為坐標(biāo)原點(diǎn)),則橢圓的離心率為(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\sqrt{\frac{\sqrt{5}-1}{2}}$C.$\frac{\sqrt{2}}{2}$D.$\frac{{\;}^{3}\sqrt{4}}{2}$

查看答案和解析>>

同步練習(xí)冊答案