5.若AB為過(guò)橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1中心的線段,點(diǎn)A、B為橢圓上的點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓的兩個(gè)焦點(diǎn),則四邊形F1AF2B面積的最大值是8.

分析 求得橢圓的a,b,c,設(shè)出A(m,n),B(-m,-n),由橢圓的對(duì)稱性可得四邊形F1AF2B為平行四邊形,則四邊形F1AF2B面積為S=2${S}_{△A{F}_{1}{F}_{2}}$,運(yùn)用橢圓的范圍,即可得到所求最大值.

解答 解:橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1的a=2$\sqrt{2}$,b=2,c=$\sqrt{{a}^{2}-^{2}}$=2,
即有|F1F2|=2c=4,
設(shè)A(m,n),B(-m,-n),
由橢圓的對(duì)稱性可得四邊形F1AF2B為平行四邊形,
則四邊形F1AF2B面積為S=2${S}_{△A{F}_{1}{F}_{2}}$=2•$\frac{1}{2}$•|F1F2|•|n|
=4|n|,
由橢圓的范圍可得|n|的最大值為2,
即有S的最大值為8.
故答案為:8.

點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),注意運(yùn)用橢圓的對(duì)稱性和范圍,以及平行四邊形的面積的求法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})過(guò)點(diǎn)({2,\sqrt{2}})$,其焦點(diǎn)在⊙O:x2+y2=4上,A,B是橢圓的左右頂點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)M,N分別是橢圓C和⊙O上的動(dòng)點(diǎn)(M,N不在y軸同側(cè)),且直線MN與y軸垂直,直線AM,BM分別與y軸交于點(diǎn)P,Q,求證:PN⊥QN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.復(fù)數(shù)(2+i)(1-i)等于( 。
A.1-iB.2-iC.3+iD.3-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,點(diǎn)A(0,$\sqrt{3}$)和點(diǎn)P都在橢圓C1上,橢圓C2方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=4.
(1)求橢圓C1的方程;
(2)過(guò)P作橢圓C1的切線l交橢圓C2于M,N兩點(diǎn),過(guò)P作射線PO交橢圓C2于Q點(diǎn),設(shè)$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$;
(i)求λ的值;
(ii)求證:△QMN的面積為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線y=kx+1,當(dāng)k變化時(shí),此直線被橢圓$\frac{{x}^{2}}{4}$+y2=1截得的最大弦長(zhǎng)是( 。
A.4B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10. 如圖,設(shè)橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦點(diǎn)分別為F1、F2,過(guò)焦點(diǎn)F1的直線交橢圓于A、B兩點(diǎn),若以△ABF2的內(nèi)切圓的面積為π,設(shè)A(x1,y1)、B((x2,y2),則|y1-y2|值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{lnx}{x}$,g(x)=x2-(a+b)x+ab,其中a<b,a,b∈R+
(1)?x∈R+,f(x)≤kx恒成立,求實(shí)數(shù)k的取值范圍;
(2)若g(e)>0,比較ab與ba的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知圓A:(x+2)2+y2=1,圓B:(x-2)2+y2=49,動(dòng)圓P與圓A,圓B均相切.
(1)求動(dòng)圓圓心P的軌跡方程;
(2)已知點(diǎn)N(2,$\frac{5}{3}$),作射線AN,與“P點(diǎn) 軌跡”交于另一點(diǎn)M,求△MNB的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知p:3x2-4ax+a2<0(a>0),q:$\left\{\begin{array}{l}{{x}^{2}-4x+3<0}\\{{x}^{2}-6x+8≥0}\end{array}\right.$,若p是q的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案