3.定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象的兩個端點(diǎn)為A、B,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b,λ∈[0,1].已知向量$\overrightarrow{ON}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,若不等式|$\overrightarrow{MN}$|≤k恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性近似”,若函數(shù)y=x-$\frac{2}{x}$在[1,2]上“k階線性近似”,則實(shí)數(shù)k的取值范圍為(  )
A.[$\sqrt{2}$-1,+∞)B.[$\sqrt{2}$+1,+∞)C.[3-2$\sqrt{2}$,+∞)D.[3+2$\sqrt{2}$,+∞)

分析 先得出M、N橫坐標(biāo)相等,再將恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題.

解答 解:由題意,M、N橫坐標(biāo)相等,|$\overrightarrow{MN}$|≤k恒成立,即|$\overrightarrow{MN}$|max≤k,
由N在AB線段上,得A(1,-1),B(2,1),
∴直線AB方程為y=2(x-1)-1
∴|$\overrightarrow{MN}$|=|y1-y2|=|x-$\frac{2}{x}$-2(x-1)+1|=|x+$\frac{2}{x}$-3|,
∵x∈[1,2],∴x+$\frac{2}{x}$∈[2$\sqrt{2}$,3]
∴x+$\frac{2}{x}$-3∈[2$\sqrt{2}$-3,0]
∴|$\overrightarrow{MN}$|max=3-2$\sqrt{2}$
∴k≥3-2$\sqrt{2}$.
故選:C.

點(diǎn)評 本題考查向量知識的運(yùn)用,考查基本不等式的運(yùn)用,解答的關(guān)鍵是將已知條件進(jìn)行轉(zhuǎn)化,同時應(yīng)注意恒成立問題的處理策略.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,點(diǎn)A(0,$\sqrt{3}$)和點(diǎn)P都在橢圓C1上,橢圓C2方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=4.
(1)求橢圓C1的方程;
(2)過P作橢圓C1的切線l交橢圓C2于M,N兩點(diǎn),過P作射線PO交橢圓C2于Q點(diǎn),設(shè)$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$;
(i)求λ的值;
(ii)求證:△QMN的面積為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓A:(x+2)2+y2=1,圓B:(x-2)2+y2=49,動圓P與圓A,圓B均相切.
(1)求動圓圓心P的軌跡方程;
(2)已知點(diǎn)N(2,$\frac{5}{3}$),作射線AN,與“P點(diǎn) 軌跡”交于另一點(diǎn)M,求△MNB的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的一個頂點(diǎn)為B(0,1),B到焦點(diǎn)的距離為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P,Q是橢圓上異于點(diǎn)B的任意兩點(diǎn),且BP⊥BQ,線段PQ的中垂線l與x軸的交點(diǎn)為(x0,0),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P為AB上一動點(diǎn),PD∥BC交AC于點(diǎn)D,現(xiàn)將△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD.
(Ⅰ)若PA=$\frac{1}{2}$,求棱錐A′-PBCD的體積;
(Ⅱ)若點(diǎn)定P為AB的中點(diǎn),求證:平面A′DC⊥平面A′BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1的兩焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線與橢圓交于A,B兩點(diǎn),則△ABF2的周長為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知p:3x2-4ax+a2<0(a>0),q:$\left\{\begin{array}{l}{{x}^{2}-4x+3<0}\\{{x}^{2}-6x+8≥0}\end{array}\right.$,若p是q的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.一個袋中裝有四個大小、形狀完全相同的小球,小球的編號分別為1,2,3,4.
(Ⅰ)從袋中隨機(jī)取兩個小球,求取出的兩個小球的編號之和不小于5的概率;
(Ⅱ)先從袋中隨機(jī)取一個小球,記此小球的編號為m,將此小球放回袋中,然后再從袋中隨機(jī)取一個小球,記該小球的編號為n,求n=m+2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lg(3+x)+lg(3-x).
(1)判斷f(x)的奇偶性并加以證明;
(2)判斷f(x)的單調(diào)性(不需要證明);
(3)解關(guān)于m的不等式.f(m)-f(m+1)<0.

查看答案和解析>>

同步練習(xí)冊答案