【題目】在極坐標系中,已知圓的圓心為,半徑為.以極點為原點,極軸方向為軸正半軸方向,利用相同單位長度建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù),且).
(Ⅰ)寫出圓的極坐標方程和直線的普通方程;
(Ⅱ)若直線與圓交于、兩點,求的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)設 ,若函數(shù)恰有一個零點,求實數(shù)的取值范圍;
(2)設 ,對任意,有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進行統(tǒng)計,得到頻率分布直方圖如圖1.
圖1 圖2
(1)記“在年成交的二手車中隨機選取一輛,該車的使用年限在”為事件,試估計的概率;
(2)根據(jù)該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,(單位:萬元)表示相應的二手車的平均交易價格.由散點圖看出,可采用作為二手車平均交易價格關于其使用年限的回歸方程,相關數(shù)據(jù)如下表(表中,):
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關于的回歸方程;
②該汽車交易市場對使用8年以內(nèi)(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數(shù)據(jù)作為決策依據(jù),計算該汽車交易市場對成交的每輛車收取的平均傭金.
附注:①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為;
②參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ) 當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學專著《九章算術》中有一個“兩鼠穿墻題”,其內(nèi)容為:“今有垣厚五尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問何日相逢?各穿幾何?”如圖的程序框圖源于這個題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結(jié)果為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等腰三角形,,, 、 分別為 , 的中點,將 沿 折到 的位置, ,取線段 的中點為 .
(1)求證: 平面 ;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 在點 處的切線方程是 .
(1)求 , 的值及函數(shù) 的最大值;
(2)若實數(shù) , 滿足 ( )
1)證明: ;
2)若 ,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,,底面是直角梯形,.
(1)求證:平面;
(2)設為側(cè)棱上一點,,試確定的值,使得二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量=(a,b)與=(cosA,sinB)平行.
(1)求A;
(2)若a=,b=2,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com