【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),過點的直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求曲線的普通方程,并說明它表示什么曲線;
(Ⅱ)設(shè)曲線與直線分別交于,兩點,若,,成等比數(shù)列,求的值.
【答案】(Ⅰ),曲線表示焦點在上的橢圓.(Ⅱ)2.
【解析】分析:(Ⅰ)利用平方關(guān)系消去參數(shù),結(jié)合的范圍即可得曲線表示焦點在上的橢圓;(Ⅱ)將將直線的參數(shù)方程代入橢圓方程,
詳解:(Ⅰ)曲線的普通方程為,
,
曲線表示焦點在上的橢圓.
(Ⅱ)將直線的參數(shù)方程(為參數(shù))代入橢圓方程,設(shè)對應(yīng)的參數(shù)分別為、,根據(jù)直線中參數(shù)的幾何意義,由題意得,再結(jié)合韋達(dá)定理即可得結(jié)果.
整理得,
即,
,
設(shè)對應(yīng)的參數(shù)分別為、,
那么,
由的幾何意義知,,,
于是,,,
若,,成等比數(shù)列,則有,
即,解得,
所以的值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某種書籍每冊的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
表中,.
為了預(yù)測印刷20千冊時每冊的成本費,建立了兩個回歸模型:,.
(1)根據(jù)散點圖,你認(rèn)為選擇哪個模型預(yù)測更可靠?(只選出模型即可)
(2)根據(jù)所給數(shù)據(jù)和(1)中選擇的模型,求關(guān)于的回歸方程,并預(yù)測印刷20千冊時每冊的成本費.
附:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是(寫出所有正確命題的編號).
①當(dāng)0<CQ< 時,S為四邊形
②當(dāng)CQ= 時,S為等腰梯形
③當(dāng)CQ= 時,S與C1D1的交點R滿足C1R=
④當(dāng) <CQ<1時,S為六邊形
⑤當(dāng)CQ=1時,S的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,現(xiàn)給出如下結(jié)論:
①; ②; ③; ④.
其中正確結(jié)論的序號為( )
A. ②③ B. ①④ C. ②④ D. ①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)求函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有直線和平面,則下列四個命題中,正確的是( )
A. 若m∥α,n∥α,則m∥nB. 若mα,nα,m∥β,l∥β,則α∥β
C. 若α⊥β,mα,則m⊥βD. 若α⊥β,m⊥β,mα,則m∥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近日,某地普降暴雨,當(dāng)?shù)匾淮笮吞釅伟l(fā)生了滲水現(xiàn)象,當(dāng)發(fā)現(xiàn)時已有的壩面滲水,經(jīng)測算,壩而每平方米發(fā)生滲水現(xiàn)象的直接經(jīng)濟損失約為元,且滲水面積以每天的速度擴散.當(dāng)?shù)赜嘘P(guān)部門在發(fā)現(xiàn)的同時立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補貼費為每人元,勞務(wù)費及耗材費為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.
寫出關(guān)于的函數(shù)關(guān)系式;
應(yīng)安排多少名人員參與搶修,才能使總損失最。ǹ倱p失=因滲水造成的直接損失+部門的各項支出費用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,其前n項和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 證明:Tn+12=﹣2an+10bn(n∈N*).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com