分析 (1)利用$\overrightarrow{AP}=2\overrightarrow{AM}$,得到P的參數(shù)方程,即可得出動點P的軌跡C的方程;
(2)利用向量數(shù)量積公式求∠EOF的余弦值;求出圓心到直線的距離,即可求出實數(shù)a的值.
解答 解:(1)設P(x,y),則
∵$\overrightarrow{AP}=2\overrightarrow{AM}$,
∴(x-12,y)=2(-6+2cosθ,2sinθ),
∴$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$,即x2+y2=16;
(2)直線:ρcosθ+ρsinθ=a可化為x+y-a=0,
∵$\overrightarrow{OE}•\overrightarrow{OF}$=12,
∴4•4•cos∠EOF=12,
∴cos∠EOF=$\frac{3}{4}$,
∴cos$\frac{1}{2}$∠EOF=$\sqrt{\frac{1+cos∠EOF}{2}}$=$\frac{\sqrt{14}}{4}$,
∴圓心到直線的距離d=4cos$\frac{1}{2}$∠EOF=$\sqrt{14}$=$\frac{|-a|}{\sqrt{2}}$,
∴a=±2$\sqrt{7}$.
點評 本題考查軌跡方程,考查向量知識的運用,考查點到直線的距離公式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“若x=2,則x2=4”的逆命題為真命題 | |
B. | 命題“p或q”為真,“非p”為假,則q可真可假 | |
C. | 命題“若log2x2=2,則x=2”的否命題為:“若log2x2=2,則x≠2” | |
D. | 命題“?x∈R使得2x<1”的否定是:“?x∈R均有2x>1” |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 模型1的相關指數(shù)R2為0.25 | B. | 模型2的相關指數(shù)R2為0.50 | ||
C. | 模型3的相關指數(shù)R2為0.98 | D. | 模型4的相關指數(shù)R2為0.80 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com