A. | $\frac{31}{33}$ | B. | $\frac{32}{33}$ | C. | $\frac{31}{66}$ | D. | $\frac{16}{33}$ |
分析 an=2n-1,可得bn=$\frac{{2}^{n-1}}{({2}^{n-1}+1)({2}^{n}+1)}$=$\frac{1}{{2}^{n-1}+1}$-$\frac{1}{{2}^{n}+1}$,利用“裂項(xiàng)求和”即可得出.
解答 解:∵an=2n-1,
∴bn=$\frac{{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{{2}^{n-1}}{({2}^{n-1}+1)({2}^{n}+1)}$=$\frac{1}{{2}^{n-1}+1}$-$\frac{1}{{2}^{n}+1}$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=$(\frac{1}{1+1}-\frac{1}{2+1})$+$(\frac{1}{2+1}-\frac{1}{{2}^{2}+1})$+…+$(\frac{1}{{2}^{n-1}+1}-\frac{1}{{2}^{n}+1})$=$\frac{1}{2}-\frac{1}{{2}^{n}+1}$.
∴T5=$\frac{1}{2}-\frac{1}{{2}^{5}+1}$=$\frac{31}{66}$.
故選:C.
點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”方法,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com