8.已知函數(shù)f(x)=$\left\{\begin{array}{l}-x-4,x≤-1\\{x^2}-5,x>-1\end{array}$,則滿足f(a)-11=0的實數(shù)a的值為( 。
A.-15或-4B.-4或4C.-15或4D.-15或-4或4

分析 由$\left\{\begin{array}{l}{-a-4=11}\\{a≤-1}\end{array}\right.$⇒a=,由$\left\{\begin{array}{l}{{a}^{2}-5=11}\\{a>-1}\end{array}\right.$⇒a即可.

解答 解:由$\left\{\begin{array}{l}{-a-4=11}\\{a≤-1}\end{array}\right.$⇒a=-15,由$\left\{\begin{array}{l}{{a}^{2}-5=11}\\{a>-1}\end{array}\right.$⇒a=4,
綜上,實數(shù)a的值為-15或4.
故選:C

點評 本題考查了分段函數(shù)求值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在曲線y=x2+1的圖象上取一點(1,2)及附近一點(1+△x,2+△y),則$\underset{lim}{△x→0}$$\frac{△y}{△x}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計算:0.125${\;}^{-\frac{1}{3}}$×$1{6}^{\frac{3}{4}}$-3${\;}^{lo{{g}_{\sqrt{3}}}^{4}}$+log364$•lo{g}_{\frac{1}{2}}$9+log89•log964.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某種豆類生長枝數(shù)隨時間增長,前6月數(shù)據(jù)如下:
第x月123456
枝數(shù)y(枝)247163363
則下列函數(shù)模型中能較好地反映豆類枝數(shù)在第x月的數(shù)量y與x之間的關(guān)系的是(  )
A.y=2xB.y=x2-x+2C.y=2xD.y=log2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.把函數(shù)y=(x-2)2+1的圖象向左平移1個單位,再向上平移1個單位后,所得圖象對應(yīng)的函數(shù)解析式是(  )
A.y=(x-3)2+2B.y=(x-3)2C.y=(x-1)2+2D.y=(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.420和882的最大公約數(shù)是42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.圓柱的側(cè)面展開圖是長12cm,寬8cm的矩形,則這個圓柱的體積為$\frac{288}{π}$或$\frac{192}{π}$ cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.關(guān)于函數(shù)f(x)=xln|x|的五個命題:
①f(x)在區(qū)間(-∞,-$\frac{1}{e}$)上是單調(diào)遞增函數(shù);
②f(x)只有極小值點,沒有極大值點;
③f(x)>0的解集是(-1,0)∪(0,1);
④函數(shù)f(x)在x=1處的切線方程為x-y+1=0;
⑤函數(shù)g(x)=f(x)-m最多有2個零點.
其中,是真命題的有①(請把真命題的序號填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且$\frac{(a+b)^{2}-{c}^{2}}{ab}$=1.
(Ⅰ)求∠C;
(Ⅱ)若c=$\sqrt{3}$,b=$\sqrt{2}$,求∠B及△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案