18.若正數(shù)a、b滿足a+2b=1,則$\frac{2}{a}$+$\frac{1}$的最小值是8.

分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵正數(shù)a、b滿足a+2b=1,
則$\frac{2}{a}$+$\frac{1}$=(a+2b)$(\frac{2}{a}+\frac{1})$=4+$\frac{4b}{a}+\frac{a}$≥4+2$\sqrt{\frac{4b}{a}×\frac{a}}$=8,當(dāng)且僅當(dāng)a=2b=$\frac{1}{2}$時(shí)取等號(hào).
∴$\frac{2}{a}$+$\frac{1}$的最小值是8.
故答案為:8.

點(diǎn)評(píng) 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}中,a1=1,且an+1=2an+1,則a4=(  )
A.7B.9C.15D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在復(fù)平面內(nèi),表示復(fù)數(shù)2-3i(i是虛數(shù)單位)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.經(jīng)過點(diǎn)P(-2,1)且斜率為k的直線l與拋物線y2=4x只有一個(gè)公共點(diǎn),則k的取值范圍為(  )
A.{0,-1}B.{0,$\frac{1}{2}}\right\$}C.{-1,$\frac{1}{2}}\right\$}D.{-1,0,$\frac{1}{2}}\right\$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個(gè)命題一定正確的是( 。
A.算法的三種基本結(jié)構(gòu)是順序結(jié)構(gòu)、條件結(jié)構(gòu),循環(huán)結(jié)構(gòu)
B.用樣本頻率分布估計(jì)總體頻率分布的過程中,總體容量越大,估計(jì)越精確
C.一組數(shù)據(jù)的方差為3,將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都擴(kuò)大到原來的3倍,所得的新數(shù)據(jù)組的方差還是3
D.有50件產(chǎn)品編號(hào)從1到50,現(xiàn)在從中抽取5件檢驗(yàn),用系統(tǒng)抽樣確定所抽取的編號(hào)為5,15,20,35,40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,一個(gè)圓錐的側(cè)面展開圖是圓心角為90°面積為S1的扇形,若圓錐的全面積為S2,則$\frac{S_2}{S_1}$等于$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題中錯(cuò)誤的是( 。
A.若m∥n,m⊥α,則n⊥αB.若m⊥α,m∥n,n∥β,則α⊥β
C.若m⊥α,m⊥β,則α∥βD.若m∥α,n∥β,α∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的各項(xiàng)均是正數(shù),其前n項(xiàng)和為Sn,滿足Sn=4-an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\left\{\begin{array}{l}{{log}_{{\frac{1}{2}}^{{a}_{n}}}}(n為奇數(shù))\\{{a}_{n}(n為偶數(shù))}\end{array}\right.$(n∈N*),求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.二項(xiàng)式(x+$\frac{1}{\root{3}{x}}$-4y)7展開式中不含x的項(xiàng)的系數(shù)之和為-47-44${∁}_{7}^{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案