9.在復(fù)平面內(nèi),表示復(fù)數(shù)2-3i(i是虛數(shù)單位)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根據(jù)復(fù)數(shù)的幾何意義求出對(duì)應(yīng)點(diǎn)的坐標(biāo)即可.

解答 解:復(fù)數(shù)2-3i(i是虛數(shù)單位)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(2,-3)位于第四象限,
故選:D.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)幾何意義的應(yīng)用,求出對(duì)應(yīng)點(diǎn)到的坐標(biāo)是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用數(shù)學(xué)歸納法證明$\frac{1}{1•2}+\frac{1}{2•3}+\frac{1}{3•4}+…+\frac{1}{{n({n+1})}}=\frac{n}{n+1}$(n∈N*)時(shí),由n=k到n=k+1,等式左端應(yīng)增加的式子為( 。
A.$\frac{1}{{k({k+1})}}$B.$\frac{1}{{k({k+1})}}+\frac{1}{{({k+1})({k+2})}}$C.$\frac{1}{{k({k+2})}}$D.$\frac{1}{{({k+1})({k+2})}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,k),若$\overrightarrow$=λ$\overrightarrow{a}$,則λ+k=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.${∫}_{1}^{e}$$\frac{1}{x}$dx的值為( 。
A.1B.-1C.$\frac{1}{e}$-1D.1-$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(Ⅰ)求f(x)的極值;
(Ⅱ)試比較20162017與20172016的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.F1、F2是橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的焦點(diǎn),P是橢圓上任意一點(diǎn),$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,隨機(jī)調(diào)查了某市300名高中學(xué)生,得到下面的數(shù)據(jù)表:
喜歡數(shù)學(xué)課程不喜歡數(shù)學(xué)課程合計(jì)
4575120
45a180
合計(jì)90b300
(Ⅰ)①求數(shù)表中a,b的值;
②用分層抽樣方法從“喜歡數(shù)學(xué)課程”和“不喜歡數(shù)學(xué)課程”兩類同學(xué)中隨機(jī)抽取一個(gè)容量為10的樣本,則應(yīng)從“喜歡數(shù)學(xué)課程”的同學(xué)中抽取幾人?
(Ⅱ)根據(jù)調(diào)查結(jié)果,能否有97.5%的把握認(rèn)為是否喜歡數(shù)學(xué)課程與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若正數(shù)a、b滿足a+2b=1,則$\frac{2}{a}$+$\frac{1}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在三棱錐ABC-A1B1C1中,底面ABC是邊長(zhǎng)為2的正三角形,側(cè)棱AA1⊥底面ABC,AA1=$\frac{\sqrt{3}}{2}$,P、Q分別是AB、AC上的點(diǎn),且PQ∥BC.
(Ⅰ)若平面A1PQ與平面A1B1C1相交于直線l,求證:l∥B1C1
(Ⅱ)當(dāng)平面A1PQ⊥平面PQC1B1時(shí),確定點(diǎn)P的位置并說明理由.S.

查看答案和解析>>

同步練習(xí)冊(cè)答案