分析 直接根據(jù)一元二次方程根與系數(shù)的關(guān)系推出a=1,b=-2,c=1,d=-2,即可證明等式:(a+b+c+d)2=abcd.
解答 證明:記S=a+b+c+d,
∵c,d是方程x2+ax+b=0的解,
∴c+d=-a----①,cd=b----②;
又∵a,b是方程x2+cx+d=0的解,
∴a+b=-c----③,ab=d----④,
由等式①和③知:a+c+d=a+b+c=0,
于是S=b=d,
因此,等式②變?yōu)椋篶d=d,等式④變?yōu)椋篴b=b,
∵a,b,c,d為非零實數(shù),∴a=c=1,
將a=c=1代回等式①,③得d=-2,b=-2,
即a=1,b=-2,c=1,d=-2,所以S=-2,
故(a+b+c+d)2=4,
且abcd=1×(-2)×1×(-2)=4,
因此,(a+b+c+d)2=abcd.
點評 本題主要考查了一元二次方程根與系數(shù)關(guān)系的應(yīng)用,以及運用綜合法證明等式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com