分析 (1)利用二倍角公式化簡可得B的大。
(2)利用三角形內(nèi)角和定理消去一個角,轉(zhuǎn)化為三角函數(shù)有界性的問題求解范圍即可.
解答 解:(1)由sinB+$\sqrt{2}$sin$\frac{B}{2}$=1-cosB.
可得:2sin$\frac{B}{2}$cos$\frac{B}{2}$+$\sqrt{2}$sin$\frac{B}{2}$=1-(1-2$si{n}^{2}\frac{B}{2}$)
?2cos$\frac{B}{2}$+$\sqrt{2}$=2sin$\frac{B}{2}$
?$\sqrt{2}$=2$\sqrt{2}$sin($\frac{B}{2}-\frac{π}{4}$)
?sin($\frac{B}{2}-\frac{π}{4}$)=$\frac{1}{2}$,
∵0<B<π,
∴0<$\frac{B}{2}$<π,
∴$-\frac{π}{4}$<$\frac{B}{2}$$-\frac{π}{4}$<$\frac{π}{4}$,
∴sin($\frac{B}{2}-\frac{π}{4}$)=sin$\frac{π}{6}$
∴B=$\frac{5π}{6}$;
(2)由(1)可得B=$\frac{5π}{6}$,
∴A+C=$\frac{π}{6}$,
那么:sinA+cosC=sinA+cos($\frac{π}{6}$-A)=$\frac{3}{2}$sinA$+\frac{\sqrt{3}}{2}$cosA=$\sqrt{3}$sin(A+$\frac{π}{6}$),
∵0<A<$\frac{π}{6}$,
∴$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{π}{3}$,
sin(A+$\frac{π}{6}$)∈($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
∴sinA+cosC的取值范圍是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).
點評 本題考查了二倍角公式化簡能力和三角形內(nèi)角和定理的靈活運用,利用三角函數(shù)的有界性求解取值范圍問題.屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,e) | B. | [e,+∞) | C. | [$\frac{3}{2e}$,3] | D. | (2,e] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\underset{lim}{x→∞}$$\frac{sinx}{x}$=1 | B. | $\underset{lim}{x→0}$$\frac{sinx}{x}$=0 | C. | $\underset{lim}{x→0}$xsin$\frac{1}{x}$=1 | D. | $\underset{lim}{x→∞}$xsin$\frac{1}{x}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,2) | B. | [$\frac{4}{3}$,2) | C. | ($\frac{4}{3}$,2) | D. | [$\frac{4}{3}$,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1] | B. | (-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1) | C. | (-∞,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,+∞) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com