18.已知不等式ln(x+1)-1≤ax+b對(duì)一切x>-1都成立,則$\frac{a}$的最小值是1-e-3

分析 令y=ln(x+1)-ax-b-1,求出導(dǎo)數(shù),分類討論,進(jìn)而得到b≥-lna+a+2,可得$\frac{a}$≥$\frac{-lna+a+2}{a}$,通過(guò)導(dǎo)數(shù)求出單調(diào)區(qū)間和極值、最值,進(jìn)而得到$\frac{a}$的最小值.

解答 解:令y=ln(x+1)-ax-b-1,則y′=$\frac{1}{x+1}$-a,
若a≤0,則y′>0恒成立,x>-1時(shí)函數(shù)遞增,無(wú)最值.
若a>0,由y′=0得:x=$\frac{1-a}{a}$,
當(dāng)-1<x<$\frac{1-a}{a}$時(shí),y′>0,函數(shù)遞增;
當(dāng)x>$\frac{1-a}{a}$時(shí),y′<0,函數(shù)遞減.
則x=$\frac{1-a}{a}$處取得極大值,也為最大值-lna+a-b-2,
∴-lna+a-b-2≤0,
∴b≥-lna+a-2,
∴$\frac{a}$≥$\frac{-lna+a-2}{a}$,
令t=$\frac{-lna+a-2}{a}$,
∴t′=$\frac{lna-3}{{a}^{2}}$,
∴(0,e3)上,t′<0,(e3,+∞)上,t′>0,
∴a=e3,tmin=1-e-3
∴$\frac{a}$的最小值為1-e-3
故答案為:1-e-3

點(diǎn)評(píng) 本題考查不等式的恒成立問(wèn)題注意轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,運(yùn)用導(dǎo)數(shù)判斷單調(diào)性,求極值和最值是解題的關(guān)鍵,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F1(-c,0)的直線交橢圓E于A,B兩點(diǎn),若|AF1|=3|F1B|,且AB⊥AF2,則橢圓E的離心率是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.經(jīng)過(guò)兩點(diǎn)(-1,2),(-3,-2)的直線的方程是(  )
A.x-2y+5=0B.x-2y-5=0C.2x-y-4=0D.2x-y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.點(diǎn)(x,y)滿足$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y≤3\end{array}\right.$,則$\frac{xy}{{{x^2}+{y^2}}}$的取值范圍為[$\frac{2}{5}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,sinB+$\sqrt{2}$sin$\frac{B}{2}$=1-cosB.
(1)求角B的大;
(2)求sinA+cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知a,b是實(shí)數(shù),若圓(x-1)2+(y-1)2=1與直線(a+1)x+(b+1)y-2=0相切,則a+b的取值范圍是(  )
A.[2-2$\sqrt{2}$,2+$\sqrt{2}$]B.(-∞,2-2$\sqrt{2}$]∪[2+2$\sqrt{2}$,+∞)C.(-∞,-2$\sqrt{2}$]∪[2$\sqrt{2}$,+∞)D.(-∞,-2]∪[2+2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在四棱錐P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一點(diǎn),且CE∥平面PAB,則點(diǎn)E到平面ABCD的距離為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=(x2-ax-1)ln(x+1)的圖象經(jīng)過(guò)三個(gè)象限,則實(shí)數(shù)a的取值范圍是a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)P={x|x<1},Q={x|x2<1},則( 。
A.P⊆QB.Q⊆PC.P⊆∁RQD.Q⊆∁RP

查看答案和解析>>

同步練習(xí)冊(cè)答案