5.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,a1=1,Sn2=an(Sn-$\frac{1}{2}$)(n≥2).
(Ⅰ)求{an}的通項(xiàng);
(Ⅱ)設(shè)bn=$\frac{{S}_{n}}{2n+1}$,求數(shù)列{bn}的前n項(xiàng)和Tn
(Ⅲ)設(shè)存在正數(shù)k,使(1+S1)(1+S2)…(1+Sn)≥k$\sqrt{2n+1}$對(duì)于一切n∈N*都成立,求k的最大值.

分析 (Ⅰ)推導(dǎo)出Sn-1-Sn=2SnSn-1,從而數(shù)列{$\frac{1}{{S}_{n}}$}是以$\frac{1}{{S}_{1}}$=1為首項(xiàng),以2為公差的等差數(shù)列,由此能求出{an}的通項(xiàng).
(Ⅱ)推導(dǎo)出bn=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,由此利用裂項(xiàng)求和法能求出數(shù)列{bn}的前n項(xiàng)和.
(Ⅲ)由已知得Sn=$\frac{1}{2n-1}$,設(shè)F(n)=$\frac{(1+{S}_{1})(1+{S}_{2})…(1+{S}_{n})}{\sqrt{2}n+1}$,推導(dǎo)出F(n)]min=F(1)=$\frac{2\sqrt{3}}{3}$,由此能出求k的最大值.

解答 解:(Ⅰ)∵Sn是數(shù)列{an}的前n項(xiàng)和,a1=1,Sn2=an(Sn-$\frac{1}{2}$)(n≥2),
∴n≥2時(shí),an=Sn-Sn-1=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$,
∴(Sn-Sn-1)(2Sn-1)=2Sn2,
∴Sn-1-Sn=2SnSn-1
∴$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,(n≥2),
∴數(shù)列{$\frac{1}{{S}_{n}}$}是以$\frac{1}{{S}_{1}}$=1為首項(xiàng),以2為公差的等差數(shù)列,
∴$\frac{1}{{S}_{n}}$=1+(n-1)×2=2n-1,
∴Sn=$\frac{1}{2n-1}$,
∵a1=1,Sn2=an(Sn-$\frac{1}{2}$)(n≥2),
∴n≥2時(shí),an=$\frac{{{S}_{n}}^{2}}{{S}_{n}-\frac{1}{2}}$=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$=$\frac{2×\frac{1}{(2n-1)^{2}}}{2×\frac{1}{2n-1}-1}$=$\frac{2}{8n-4{n}^{2}-3}$.
∴${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{\frac{2}{8n-4{n}^{2}-3},n≥2}\end{array}\right.$.
(Ⅱ)bn=$\frac{{S}_{n}}{2n+1}$=$\frac{\frac{1}{2n-1}}{2n+1}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數(shù)列{bn}的前n項(xiàng)和:
Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}-\frac{1}{5}$+…+$\frac{1}{2n-1}-\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{n}{2n+1}$.
(Ⅲ)由(Ⅰ)知$\frac{1}{{S}_{n}}$=1+(n-1)×2=2n-1,
∴Sn=$\frac{1}{2n-1}$,
設(shè)F(n)=$\frac{(1+{S}_{1})(1+{S}_{2})…(1+{S}_{n})}{\sqrt{2}n+1}$,
則$\frac{F(n+1)}{F(n)}$=$\frac{(1+{S}_{n+1})\sqrt{2n+1}}{\sqrt{2n+3}}$
=$\frac{2n+2}{\sqrt{(2n+1)(2n+3)}}$
=$\frac{\sqrt{4{n}^{2}+8n+4}}{\sqrt{4{n}^{2}+8n+3}}>1$,
∴F(n)在n∈N*上遞增,要使F(n)≥k恒成立,只需[F(n)]min≥k,
∴[F(n)]min=F(1)=$\frac{2\sqrt{3}}{3}$,
∴$0<k≤\frac{2}{3}\sqrt{3}$,
∴kmax=$\frac{2}{3}\sqrt{3}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的求法,考查實(shí)數(shù)的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.世界華商大會(huì)的某分會(huì)場(chǎng)有A,B,C,將甲,乙,丙,丁共4名“雙語(yǔ)”志愿者分配到這三個(gè)展臺(tái),每個(gè)展臺(tái)至少1人,求解其中甲,乙兩人被分配到同一展臺(tái)的不同分法種數(shù)?
解題分析步驟如下:
(1)要求甲乙被分到一個(gè)展臺(tái),可以把甲乙捆綁在一起,采用整體法,看成一個(gè)板塊;
(2)甲乙一個(gè)板塊和剩下的丙、丁一共可 看成3個(gè)板塊;
(3)之后對(duì)這幾個(gè)板塊進(jìn)行全排練.
(4)最后可得出不同分法總數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)求用數(shù)字1,2,3,4,5組成的無(wú)重復(fù)數(shù)字的四位偶數(shù)的個(gè)數(shù);
(2)4個(gè)不同的小球放入編號(hào)為1,2,3,4的4個(gè)盒子中,恰有1個(gè)空盒的放法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知圓C經(jīng)過(guò)點(diǎn)(1,$\sqrt{3}$),圓心在直線(xiàn)y=x上,且被直線(xiàn)y=-x+2截得的弦長(zhǎng)為2$\sqrt{2}$.
(I)求圓C的方程.
(Ⅱ)若直線(xiàn)l過(guò)點(diǎn)($\frac{3}{2}$,0),與圓C交于P,Q兩點(diǎn),且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=-2,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.政府鼓勵(lì)創(chuàng)新、創(chuàng)業(yè),銀行給予低息貸款.一位大學(xué)畢業(yè)生向自主創(chuàng)業(yè),經(jīng)過(guò)市場(chǎng)調(diào)研、測(cè)算,有兩個(gè)方案可供選擇.
方案1:開(kāi)設(shè)一個(gè)科技小微企業(yè),需要一次性貸款40萬(wàn)元,第一年獲利是貸款額的10%,以后每年比上一年增加25%的利潤(rùn).
方案2:開(kāi)設(shè)一家食品小店,需要一次性貸款20萬(wàn)元,第一年獲利是貸款額的15%,以后每年比上一年增加利潤(rùn)1.5萬(wàn)元.兩種方案使用期限都是10年,到期一次性還本付息.兩種方案均按年息2%的復(fù)利計(jì)算(參考數(shù)據(jù):1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22).
(1)10年后,方案1,方案2的總收入分別有多少萬(wàn)元?
(2)10年后,哪一種方案的利潤(rùn)較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在(x+$\root{3}{2}$y)8的展開(kāi)式中,系數(shù)為有理數(shù)的項(xiàng)的所有系數(shù)之和為225.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若從區(qū)間[0,2]中隨機(jī)取出兩個(gè)數(shù)a和b,則關(guān)于x的一元二次方程x2+2ax+b2=0有實(shí)根,且滿(mǎn)足a2+b2≤4的概率為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.從1,2,3,4中任取兩個(gè)不同的數(shù),其和是3的倍數(shù)的概率是( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知af(4x-3)+bf(3-4x)=4x,a2≠b2,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案