精英家教網 > 高中數學 > 題目詳情
10.在數列{an}中,已知a1=1,前n項和Sn滿足${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$)(n≥2),則Sn=$\frac{1}{3-2n}$.

分析 由${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$)(n≥2),可得 ${S}_{n}^{2}$=(Sn-Sn-1)(Sn-$\frac{1}{2}$)(n≥2),變形為:$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=-2,再利用等差數列的通項公式即可得出.

解答 解:∵${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$)(n≥2),
∴${S}_{n}^{2}$=(Sn-Sn-1)(Sn-$\frac{1}{2}$)(n≥2),
化為:2SnSn-1-Sn+Sn-1=0,
∴$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=-2,
∴數列$\{\frac{1}{{S}_{n}}\}$是等差數列,首項為1,公差為-2.
∴$\frac{1}{{S}_{n}}$=1-2(n-1)=3-2n.
∴Sn=$\frac{1}{3-2n}$.
故答案為:$\frac{1}{3-2n}$.

點評 本題考查了等差數列的通項公式、遞推關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

8.已知點(a,1)到直線x-y+1=0的距離為1,則a的值為(  )
A.1B.-1C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.如圖,在三棱錐D-ABC中,已知AB=2,$\overrightarrow{AC}$•$\overrightarrow{BD}$=-3,設AD=a,BC=b,CD=c,則$\frac{c^2}{ab+1}$的最小值為2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.圓(x-2)2+y2=5與直線y=2x+1的位置關系是( 。
A.相交B.相切C.相離D.直線過圓心

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.若函數f(x)=x(lnx-ax)在區(qū)間(0,e)上有兩個不同的極值點,則實數a的取值范圍是( 。 (e是自然對數的底數)
A.$(\frac{1}{2e},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$(\frac{1}{2e},+∞)$D.$(\frac{1}{e},\frac{1}{2})$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知復數z滿足z-i=iz+3,則$\overline{z}$=( 。
A.1+2iB.1-2iC.2+2iD.2-2i

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知數列{an}的各項都大于1,且a1=2,a${\;}_{n+1}^{2}$-an+1-a${\;}_{n}^{2}$+1=0(n∈N*).
(1)求證:$\frac{n+7}{4}$≤an<an+1≤n+2;
(2)求證:$\frac{1}{2{a}_{1}^{2}-3}$+$\frac{1}{2{a}_{2}^{2}-3}$+$\frac{1}{2{a}_{3}^{2}-3}$+…+$\frac{1}{2{a}_{n}^{3}-3}$<1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若函數f(x)=2x+b-1(b∈R)的圖象不經過第二象限,則有( 。
A.b≥1B.b≤1C.b≥0D.b≤0

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.函數y=2lnx-$\frac{1}{{x}^{2}}$的零點所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

同步練習冊答案