精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
ex
1+ax2
,其中a為實數,常數e=2.718….
(1)若x=
1
3
是函數f(x)的一個極值點,求a的值;
(2)當a取正實數時,求函數f(x)的單調區(qū)間;
(3)當a=-4時,直接寫出函數f(x)的所有減區(qū)間.
考點:利用導數研究函數的單調性
專題:導數的綜合應用
分析:(1)通過x=
1
3
,利用函數f(x)的一個極值點,列出關系式即可求a的值;
(2)當a取正實數時,利用導數以及導函數為0,判斷函數的符號,即可求函數f(x)的單調區(qū)間;
(3)當a=-4時,結合(2)即可直接寫出函數f(x)的所有減區(qū)間.
解答: (本小題滿分12分)
(1)解:f′(x)=
(ax2-2ax+1)ex
(1+ax2)2
(2分)
因為x=
1
3
是函數f(x)的一個極值點,所以f′(
1
3
)=0

1
9
a-
2
3
a+1=0,a=
9
5

而當a=
9
5
時,ax2-2ax+1=
9
5
(x2-2x+
5
9
)=
9
5
(x-
1
3
)(x-
5
3
)

可驗證:x=
1
3
是函數f(x)的一個極值點.因此a=
9
5
.(4分)
(2)當a取正實數時,f′(x)=
(ax2-2ax+1)ex
(1+ax2)2
,
令f'(x)=0得ax2-2ax+1=0,
當a>1時,解得x1=
a-
a2-a
a
x2=
a+
a2-a
a

所以當x變化時,f'(x)、f(x)的變化是
x(-∞,
a-
a2-a
a
)
a-
a2-a
a
(
a-
a2-a
a
a+
a2-a
a
)
a+
a2-a
a
(
a+
a2-a
a
,+∞)
f'(x)+0-0+
f(x)極大值極小值
所以f(x)的單調遞增區(qū)間為(-∞,
a-
a2-a
a
)
,(
a+
a2-a
a
,+∞)
,
單調減區(qū)間為(
a-
a2-a
a
a+
a2-a
a
)
;
當0<a≤1時,f'(x)≥0恒成立,故f(x)的單調增區(qū)間是(-∞,+∞).(9分)
(3)當a=-4時,f(x)的單調減區(qū)間是(-∞,-
1
2
)
(-
1
2
,1-
5
2
)
,(1+
5
2
,+∞)
點評:本小題主要考查函數與導數的知識,具體涉及到導數的運算,用導數來研究函數的單調性、極值等,以及函數與不等式知識的綜合應用,考查學生解決問題的綜合能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列命題正確的個數是( 。
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②“函數f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量
a
b
的夾角是鈍角”的充分必要條件是“
a
b
<0”.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

若關于x的方程mx2-(1-m)x+m=0沒有實數根,則實數m的取值范圍是(  )
A、(-∞,-1)
B、(
1
3
,+∞)
C、(-1,
1
3
D、(-∞,-1)∪(
1
3
,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知P為拋物線y2=4x上一個動點,Q為圓x2+(y-4)2=1上一個動點,那么點P到點Q的距離與點P到拋物線的準線距離之和的最小值是( 。
A、5
B、8
C、
17
-1
D、
5
+2

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=lnx+ax+
x2
2
為其定義域上的增函數,則實數a的取值范圍是( 。
A、(0,+∞)
B、[0,+∞)
C、(-1,0)
D、[-2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-(a+2)x+alnx.
(1)討論f(x)的單調性;
(2)當a=-1時,過坐標原點O作曲線y=f(x)的切線,設切點為P(m,n),求實數m的值;
(3)設定義在區(qū)間D上的函數y=g(x)在點P(x0,y0)處的切線方程為l:y=h(x),當x≠x0時,若
g(x)-h(x)
x-x0
>0在區(qū)間D內恒成立,則稱點P為函數y=g(x)的“轉點”.當a=8時,試問:函數y=f(x)是否存在“轉點”?若存在,請求出“轉點”的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x),如果存在給定的實數對(a,b),使得對f(x),f(a+x),f(a-x)有定義的所有x都有f(a+x)+f(a-x)=b恒成立,則稱f(x)為“п-函數”.
(Ⅰ)判斷函數f1(x)=2sinx,f2(x)=lnx是否是“п-函數”;
(Ⅱ)若f3(x)=tanx是一個“п-函數”,求出所有滿足條件的有序實數對(a,b)(參考公式tan(α+β)=
tanα+tanβ
1-tanαtanβ
,tan(α-β)=
tanα-tanβ
1+tanαtanβ
);
(Ⅲ)若定義域為R的函數f(x)是“п-函數”,且存在滿足條件的有序實數對(0,1)和(1,2).當x∈(0,1]時,f(x)的值域為[1,2],求當x∈[-2012,2012]時函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知四棱錐S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一點.
(1)求證:平面EBD⊥平面SAC;
(2)假設SA=4,AB=2,求點A到平面SBD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知集合A={x|log2(3-x)≤2},集合B={x|
2
x+2
≥1},求A∩B.
(2)將形如
.
a11a12
a21a22
.
的符號稱二階行列式,現(xiàn)規(guī)定
.
a11a12
a21a22
.
=a11a22-a12a21.試計算二階行列式
.
cos
π
4
1
1cos
π
3
.
的值.

查看答案和解析>>

同步練習冊答案