9.已知U={1,2,3,4},A={1,3},求∁UA.

分析 直接利用補集的運算法則求解即可.

解答 解:U={1,2,3,4},A={1,3},
UA={2,4}.
故答案為:{2,4}

點評 本題考查補集的運算法則的應(yīng)用,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\ x+1,x≤0\end{array}$.則f(f($\frac{1}{4}$))=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={x|x2<1},B={y|y=|x|},則A∩B=(  )
A.B.(0,1)C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在平面直角坐標系xOy中以原點O為極點以x軸為正半軸為極軸,與直角坐標系xOy取相同的長度單位建立極坐標系,已知曲線C的極坐標方程為ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0.
(Ⅰ)求曲線C的普通方程;
(Ⅱ)設(shè)點P(x,y)是曲線C上任意一點,求xy的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知a>0,b≥0,c≥0且$\left\{\begin{array}{l}{b+2c≥2a}\\{b+4c≤4a}\\{b-c≤2a}\end{array}\right.$,則$\frac{c+a}{b+a}$的取值范圍是[$\frac{1}{3}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}的首項為2,前n項和為Sn,且$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$(n∈N*).
(1)求a2的值;
(2)設(shè)bn=$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$,求數(shù)列{bn}的通項公式;
(3)若am,ap,ar(m,p,r∈N*,m<p<r)成等比數(shù)列,試比較p2與mr的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若集合P={y|y≥0},且P⊆Q,則集合Q不可能是  ( 。
A.{y|y=x2-1}B.{y|y=2x}C.{y|y=lgx}D.{y|y=x2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項和為Sn,Sn=2an-2,(n≥1,n∈N),數(shù)列{bn}中,b1=1,b2=3,2bn+1=bn+bn+2,(n≥1,n∈N)
(1)求an和bn
(2)令Tn=$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$,是否存在正整數(shù)M使得Tn<M對一切正整數(shù)n都成立?若存在,求出M的最小值;若不存在,請說明理由.
(3)令cn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$,證明:$\frac{n}{2}$-$\frac{1}{3}$<c1+c2+…+cn<$\frac{n}{2}$,(n≥1,n∈N)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若橢圓的中點在原點,一個焦點為(0,2),直線y=3x+7與橢圓相交所得弦的中點的縱坐標為1,則這個橢圓的方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

同步練習冊答案